274 Matching Results

Search Results

Advanced search parameters have been applied.

2XII Thomson scattering system

Description: A Thomson-scattering system using a 6-joule Q-switched ruby laser and an eight-channel polychromator was constructed and employed to measure electron temperatures and densities at the center of the 2XII mirror confinement experiment. This report discusses experimental considerations used to guide design, construction, alignment, and operation of the Thomson-scattering system. (auth)
Date: December 1, 1973
Creator: Simonen, T.C.
Partner: UNT Libraries Government Documents Department

Electron beam conditioning by Thomson scattering

Description: A method is proposed for conditioning electron beams via Thomson scattering. The conditioning provides a quadratic correlation between the electron energy deviation and the betatron amplitude of the electrons, which results in enhanced gain in free-electron lasers. Quantum effects imply conditioning must occur at high laser fluence and moderate electron energy. Conditioning of x-ray free-electron lasers should be achievable with present laser technology, leading to significant size and cost reductions of these large-scale facilities.
Date: November 25, 2003
Creator: Schroeder, C.B.; Esarey, E. & Leemans, W.P.
Partner: UNT Libraries Government Documents Department

Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

Description: We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.
Date: February 11, 2005
Creator: Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F et al.
Partner: UNT Libraries Government Documents Department

Equilibrium Reconstruction on the Large Helical Device

Description: Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested flux surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.
Date: July 27, 2012
Creator: Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki
Partner: UNT Libraries Government Documents Department

Femtosecond electron and x-ray generation by laser andplasma-based sources

Description: The generation of ultra-short x-rays by Thomson scattering intense laser pulses from electron beams is discussed, including recent experimental results and methods for enhancing the x-ray flux. A high flux of x-rays in a femtosecond pulse requires the generation of femtosecond electron bunches and a head-on Thomson scattering geometry. The generation of ultrashort electron bunches in a plasma-based accelerator with an injection technique that uses two colliding laser pulses is discussed. Simulations indicate the bunches as short as a few fs can be produced. Conversion of the fs electron pulse to a fs x-ray pulse can be accomplished by Bremsstrahlung or Thomson scattering.
Date: February 1, 2000
Creator: Esarey, E. & Leemans, W.P.
Partner: UNT Libraries Government Documents Department

High-Power Laser Pulse Recirculation for Inverse Compton Scattering-Produced Gamma-Rays

Description: Inverse Compton scattering of high-power laser pulses on relativistic electron bunches represents an attractive method for high-brightness, quasi-monoenergetic {gamma}-ray production. The efficiency of {gamma}-ray generation via inverse Compton scattering is severely constrained by the small Thomson scattering cross section. Furthermore, repetition rates of high-energy short-pulse lasers are poorly matched with those available from electron accelerators, resulting in low repetition rates for generated {gamma}-rays. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. Here we propose and experimentally demonstrate an alternative method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J. Inverse Compton scattering of recirculated Joule-level laser pulses has a potential to produce unprecedented peak and average {gamma}-ray brightness in the next generation of sources.
Date: April 17, 2007
Creator: Jovanovic, I; Shverdin, M; Gibson, D & Brown, C
Partner: UNT Libraries Government Documents Department

Use of fast scopes to enable Thomson scattering measurement in presence of fluctuating plasma light.

Description: The addition of inexpensive high-speed oscilloscopes has enabled higher Te Thomson scattering measurements on the SSPX spheromak. Along with signal correlation techniques, the scopes allow new analyses based on the shape of the scattered laser pulse to discriminate against fluctuating background plasma light that often make gated-integrator measurements unreliable. A 1.4 J Nd:YAG laser at 1064 nm is the scattering source. Spatial locations are coupled by viewing optics and fibers to 4-wavelength-channel filter polychrometers. Ratios between the channels determine Te while summations of the channels determine density. Typically, the channel that provides scattered signal at higher Te is contaminated by fluctuating background light. Individual channels are correlated with either a modeled representation of the laser pulse or a noise-free stray light signal to extract channel amplitudes.
Date: April 19, 2004
Creator: McLean, H; Moller, J & Hill, D
Partner: UNT Libraries Government Documents Department

Laser-plasma interaction in ignition relevant plasmas: benchmarking our 3D modelling capabilities versus recent experiments

Description: We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.
Date: September 27, 2007
Creator: Divol, L; Froula, D H; Meezan, N; Berger, R; London, R A; Michel, P et al.
Partner: UNT Libraries Government Documents Department

Intra-cavity Thomson Scattering

Description: The kW-class infrared (IR) free electron laser (FEL) at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) had the capability of producing intra-cavity Thomson scattering of the IR off the electron beam thus producing high average flux, sub-picosecond x-rays. We have measured these x-rays and demonstrated the energy tunability range from 3.5 keV to 18 keV. The corresponding flux and brightness have been estimated and will be discussed. In 2002, the FEL was disassembled and has been reconfigured to produce 10 kW average power IR. We present the estimated x-ray capabilities for the new FEL and discuss potential applications.
Date: January 2003
Creator: Boyce, James
Partner: UNT Libraries Government Documents Department

TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

Description: A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.
Date: March 1995
Creator: Machuzak, J. S.; Woskov, P. P.; Gilmore, J.; Bretz, N. L.; Park, H. K.; Aamodt, R. E. et al.
Partner: UNT Libraries Government Documents Department

High-energy 4{omega} probe laser for laser-plasma experiments at nova

Description: For the characterization of inertial confinement fusion plasmas we implemented a high-energy 4{omega} probe laser at the Nova laser facility. A total energy of > 50 Joules at 4{omega}, a focal spot size of order 100 {micro}m, and a pointing accuracy of 100 {micro}m was demonstrated for target shots. This laser provides intensities of up to 3 x 10{sup 14}W cm{sup -2} and therefore fulfills high-power requirements for laser-plasma interaction experiments. The 4{omega} probe laser is now routinely used for Thomson scattering. Successful experiments were performed in gas-filled hohlraums at electron densities of n{sub e} > 2 X 10{sup 21}cm{sup -3} which represents the highest density plasma so far being diagnosed with Thomson scattering.
Date: June 2, 1998
Creator: Glenzer, S. H., LLNL
Partner: UNT Libraries Government Documents Department

Application of coherent lidar to ion measurements in plasma diagnostics

Description: A coherent lidar system has been constructed for the measurement of alpha particles in a burning plasma. The lidar system consists of a pulsed CO{sub 2} laser transmitter and a heterodyne receiver. The receiver local oscillator is a cw, sequence-band CO{sub 2} laser operating with a 63.23 GHz offset from the transmitter.
Date: March 1, 1997
Creator: Hutchinson, D.P.; Richards, R.K.; Bennett, C.A. & Simpson, M.L.
Partner: UNT Libraries Government Documents Department

Formation and sustainment of a very low aspect ratio tokamak using coaxial helicity injection (the Helicity Injected [HIT] experiment). Annual progress report No. 5, December 1, 1993--December 31, 1994

Description: This is the fifth Progress Report on the Helicity Injected Tokamak (HIT) at the University of Washington, Seattle, DOE Grant DE-FE06-90ER54095. This report covers the period of December 1, 1993 through December 31.
Date: February 6, 1995
Creator: Jarboe, T.R. & Nelson, B.A.
Partner: UNT Libraries Government Documents Department

APD detector electronics for the NSTX Thomson scattering system

Description: An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.
Date: August 7, 2000
Creator: Johnson, D.W.; LeBlanc, B.P.; Long, D.L. & Renda, G.
Partner: UNT Libraries Government Documents Department

Thomson scattering from laser plasmas

Description: Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.
Date: January 12, 1999
Creator: Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H et al.
Partner: UNT Libraries Government Documents Department

Survey Talk--New Laser and Optical RadiationDiagnostics

Description: New techniques am reported for electron beam monitoring, that rely either on the analysis of the properties of wiggler radiation (from static magnetic fields as well as from laser "undulators", also referred to as Thomson scattering) or on the non-linear mixing of laser radiation with electron beam radiation. The different techniques reviewed are capable of providing information on femtosecond time scales and micron or even sub-micron spatial scales. The laser undulator is also proposed as a useful tool for non- destructive measurement of high power electron beams. An example is given of measuring electron beam energy and energy spread through spectral filtering of spontaneous wiggler radiation [1]. A novel technique based on fluctuational characteristics of radiation is described, for single shot, nondestructive measurement of the electron beam bunch length [2,3]. Thomson scattering based beam monitoring techniques are discussed which, through analysis of the radiated beam properties, allow non-destructive detailed measurement of transverse and longitudinal distributions of relativistic electron beams [4]. Two new techniques are discussed which rely on non-linear optical mixing of laser radiation with electron bunch emission: differential optical gating (DOG) [5] and electron bunch length measurement in a storage ring based on sum-frequency generation [6].
Date: September 1, 1998
Creator: Leemans, W.P.
Partner: UNT Libraries Government Documents Department

Development of critical surface diagnostic based on the ion acoustic decay instability in laser produced high density plasma

Description: We have developed a large angle, UV collective Thomson scattering (CTS) diagnostic for high density, hot plasma relevant to laser fusion. The CTS measured the basic parameters of the plasma waves (frequency, wave number), or the spectral density function for selected wave vectors of plasma waves, which were excited by the IADI (ion acoustic parametric decay instability). It is a good diagnostic tool for a local electron temperature measurement. The electron temperature was estimated by measuring either ion acoustic wave or electron plasma wave in the laser intensity window of 1<I{sub L}/I{sub th}<8. The CTS diagnostic is also useful to study important physics of plasma waves in laser produced high density plasma.
Date: December 31, 1994
Creator: Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S. & Estabrook, K.G.
Partner: UNT Libraries Government Documents Department

The Jefferson Lab Sub-picosecond X-ray Program

Description: The kW-class infrared (IR) Free Electron Laser (FEL) at Jefferson Lab had the capability of producing intracavity Thomson scattering of the IR off the electron beam thus producing high average flux, sub-picosecond x-rays. We have measured these x-rays and demonstrated the energy tuneability range from 3.5 keV to 18 keV. The corresponding flux and brightness has been estimated and will be discussed. This year, 2002, the FEL was disassembled and has been reconfigured to produce 10 kW average power IR. We present the estimated x-ray capabilities for the new FEL and discuss potential applications.
Date: November 1, 2002
Creator: Boyce, J.R.; Benson, S.V.; Bohn, C.L.; Douglas, D.R.; Dylla, H.F.; Gubeli, J.F. et al.
Partner: UNT Libraries Government Documents Department

Detailed Hydrodynamic and X-Ray Spectroscopic Analysis of a Laser-Produced Rapidly-Expanding Aluminum Plasma

Description: We present a detailed analysis of K-shell emission from laser-produced rapidly-expanding aluminum plasmas. This work forms part of a series of experiments performed at the Vulcan laser facility of the Rutherford Appleton Laboratory, UK. 1-D planar expansion was obtained by over-illuminating Al-microdot targets supported on CH plastic foils. The small size of the Al-plasma ensured high spatial and frequency resolution of the spectra, obtained with a single crystal spectrometer, two vertical dispersion variant double crystal spectrometers, and a vertical dispersion variant Johann Spectrometer. The hydrodynamic properties of the plasma were measured independently by spatially and temporally resolved Thomson scattering, utilizing a 4{omega} probe beam. This enabled sub- and super- critical densities to be probed relative to the 1{omega} heater beams. The deduced plasma hydrodynamic conditions are compared with those generated from the 1-D hydro-code Medusa, and the significant differences found in the electron temperature discussed. Synthetic spectra generated from the detailed term collisional radiative non-LTE atomic physics code Fly are compared with the experimental spectra for the measured hydrodynamic parameters, and for those taken from Medusa. Excellent agreement is only found for both the H- and He-like Al series when careful account is taken of the temporal evolution of the electron temperature.
Date: April 3, 2001
Creator: Chambers, D M; Glenzer, S H; Hawreliak, J; Wolfrum, E; Gouveia, A; Lee, R W et al.
Partner: UNT Libraries Government Documents Department

LASER WAKEFIELD ACCELERATION DRIVEN BY ATF CO2 LASER (STELLA-LW).

Description: A new experiment has begun that builds upon the successful Staged Electron Laser Acceleration (STELLA) experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. STELLA was based upon inverse free electron lasers (IFEL); the new experiment, called STELLA-LW, is based upon laser wakefield acceleration (LWFA). The first phase of STELLA-LW will be to demonstrate LWFA in a capillary discharge driven by the Brookhaven National Laboratory Accelerator Test Facility (ATF) terawatt CO{sub 2} laser beam. This will be the first time LWFA is conducted at 10.6-{micro}m laser wavelength. It will also be operating in an interesting pseudo-resonant regime where the laser pulse length is too long for resonant LWFA, but too short for self-modulated LWFA. Analysis has shown that in pseudo-resonant LWFA, pulse-steepening effects occur on the laser pulse that permits generation of strong wakefields. Various approaches are being explored for the capillary discharge including polypropylene and hydrogen-filled capillaries. Planned diagnostics for the experiment include coherent Thomson scattering (CTS) to detect the wakefield generation. This will be one of the first times CTS is used on a capillary discharge.
Date: September 25, 2004
Creator: KIMURA,W. D.; ANDREEV,N. E.; BABZIEN,M.; BEN-ZVI,I. & AL., ET
Partner: UNT Libraries Government Documents Department

Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

Description: We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.
Date: July 1, 2003
Creator: Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R et al.
Partner: UNT Libraries Government Documents Department

Reconstruction of Detached Divertor Plasma Conditions in DIII-D Using Spectroscopic and Probe Data

Description: For some divertor aspects, such as detached plasmas or the private flux zone, it is not clear that the controlling physics has been fully identified. This is a particular concern when the details of the plasma are likely to be important in modeling the problem--for example, modeling co-deposition in detached inner divertors. An empirical method of ''reconstructing'' the plasma based on direct experimental measurements may be useful in such situations. It is shown that a detached plasma in the outer divertor leg of DIII-D can be reconstructed reasonably well using spectroscopic and probe data as input to a simple onion-skin model and the Monte Carlo hydrogenic code, EIRENE. The calculated 2D distributions of n{sub e} and T{sub e} in the detached divertor were compared with direct measurements from the divertor Thomson scattering system, a diagnostic capability unique to DIII-D.
Date: December 3, 2004
Creator: Stangeby, P & Fenstermacher, M
Partner: UNT Libraries Government Documents Department

Warm, Dense Plasma Characterization by X-ray Thomson Scattering

Description: We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.
Date: July 18, 2000
Creator: Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E & Degroot, J S
Partner: UNT Libraries Government Documents Department