653 Matching Results

Search Results

Advanced search parameters have been applied.

U.S. Department of Energy (DOE)--Surface Biogeochemical Research (SBR) 6th Annual PI Meeting: Abstracts

Description: On behalf of the Subsurface Biogeochemical Research (SBR) program managers in the Climate and Environmental Sciences Division (CESD), Office of Biological and Environmental Research (BER), welcome to the 2011 SBR Principal Investigators meeting. Thank you in advance for your attendance and your presentations at this year's meeting. As the events in Japan continue to unfold, we are all reminded that the research we perform on radionuclide behavior in the environment has implications beyond legacy waste cleanup and in fact has its place in the discussion on the expanded use of nuclear power. As in the past, there are three broad objectives to the Principal Investigators meeting: (1) to provide opportunities to share research results and promote interactions among the SBR scientists and other invited guests; (2) to evaluate the progress of each project within the program; and (3) to showcase the scientific expertise and research progress over the past year to senior managers within the DOE Office of Science, the technology offices within DOE, and other invited attendees from other Federal Agencies. This past year has seen a few significant changes within BER and within the SBR program. In November, our Associate Director for BER, Anna Palmisano, retired from Federal service. Just this month, Dr. Sharlene Weatherwax (Division Director for Biological Systems Sciences) has been named as the new Associate Director for BER. In August, BER welcomed Dr. Gary Geernaert as the new Division Director for CESD. Gary joins the division from Los Alamos National Laboratory with a background in atmospheric science. Within the SBR program, a new Strategic Plan was completed last June (currently posted on the SBR and the Office of Science website). The new strategic plan is intended to foster integration within the Environmental Systems Science portion of the BER budget that includes both SBR and Terrestrial ...
Date: April 11, 2011
Creator: Hazen Ed., T.C.
Partner: UNT Libraries Government Documents Department

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

Description: Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.
Date: March 1, 2009
Creator: Wu, C. H.; Bernard, S.; Andersen, G.L. & Chen, W.
Partner: UNT Libraries Government Documents Department

Workshop on Plant Dispersal and Migration Modeling. Final Report for period June 1, 2001 - May 31, 2002

Description: Global environmental change is causing shifts in the geographical locations of habitats suitable for particular plant species. While it is established that the future distributions of plant species will be strongly influenced by the ability of plants to migrate to sites of suitable habitat, our ability to predict potential and actual migration rates is rudimentary. This workshop organized by the Global Change and Terrestrial Ecosystems (GCTE) core project of the International Geosphere-Biosphere Program provided scientists with interests and expertise in global change and plant migration with a forum for developing a new collaborative synthesis of understanding on long distance dispersal and migration modeling. This grant from the U.S. Department of Energy, Office of Biological and Environmental Research, provided partial support for the workshop by supporting the participation of U.S. scientists.
Date: November 4, 2002
Creator: Pitelka, L. F.
Partner: UNT Libraries Government Documents Department

PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

Description: PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout.
Date: January 1, 1982
Creator: Kirchner, T.B.; Whicker, F.W. & Otis, M.D.
Partner: UNT Libraries Government Documents Department

Terrestrial biogeochemical feedbacks in the climate system: from past to future

Description: The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.
Date: January 5, 2010
Creator: Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J. et al.
Partner: UNT Libraries Government Documents Department

Climate Research Roadmap Workshop: Summary Report, May 13-14, 2010

Description: In recognition of the ongoing advances and challenges of climate change research, DOE's Office of Biological and Environmental Research (BER) organized a workshop asking the scientific community to identify the current state of climate science. The goal of the workshop was to determine the research challenges important for developing a predictive understanding of global climate. Participants were asked to focus on interdisciplinary research that capitalized on BER's scientific strengths in Atmospheric System Research, Terrestrial Ecosystem Science, and Climate and Earth System Modeling. Approximately 50 scientists representing these three areas were asked to identify desired outcomes for the next 10 years. Goals were identified for the near (1--3 years), mid (4--7 years), and long term (8--10 years). Discussions were focused by discipline (atmospheric, terrestrial, and modeling) and by latitude (high, temperate, and tropical). In addition, opportunities and needs for integration across disciplines and latitudes were identified with a specific focus on crosscutting challenges and outcomes. BER will use this workshop output to update its strategic plan for climate research.
Date: September 1, 2010
Partner: UNT Libraries Government Documents Department

EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

Description: This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.
Date: August 1, 2011
Creator: Brown, Gordon E.; Chaka, Anne; Shuh, David K.; Roden, Eric E.; Werth, Charles J.; Hess, Nancy J. et al.
Partner: UNT Libraries Government Documents Department

Botanical inventory of the Rocky Flats AEC site. Progress report, June 1, 1973--February 15, 1974

Description: Plant collections on the Rocky Flats site began in June 1973 and will be completed in June 1974. Replicate sets of the collections are deposited at the University of Colorado Museum, the Rocky Flats Plant, and Colorado State university. An interim report consisting of an arotated list of species is in preparation at the present time. (auth)
Date: January 1, 1974
Creator: Weber, W.A.
Partner: UNT Libraries Government Documents Department

The consequences of failure should be considered in siting geologic carbon sequestration projects

Description: Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.
Date: February 23, 2009
Creator: Price, P.N. & Oldenburg, C.M.
Partner: UNT Libraries Government Documents Department

A program to assess microbial impacts on nuclear waste containment

Description: In this paper we discuss aspects of a comprehensive program to identify and bound potential effects of microorganisms on long-term nuclear waste containment, using as examples, studies conducted within the Yucca Mountain Project. A comprehensive program has been formulated which cuts across standard disciplinary lines to address the specific concerns of microbial activity in a radioactive waste repository. Collectively, this program provides bounding parameters of microbial activities that modify the ambient geochemistry and hydrology, modify corrosion rates, and transport and transform radionuclides under conditions expected to be encountered after geological waste emplacement. This program is intended to provide microbial reaction rates and bounding conditions in a form that can be integrated into existing chemical and hydrological models. The inclusion of microbial effects will allow those models to more accurately assess long term repository integrity.
Date: February 20, 1996
Creator: Horn, J. & Meike, A.
Partner: UNT Libraries Government Documents Department

Landscape characterization and biodiversity research

Description: Rapid deforestation often produces landscape-level changes in forest characteristics and structure, including area, distribution, and forest habitat types. Changes in landscape pattern through fragmentation or aggregation of natural habitats can alter patterns of abundance for single species and entire communities. Examples of single-species effects include increased predation along the forest edge, the decline in the number of species with poor dispersal mechanisms, and the spread of exotic species that have deleterious effects (e.g., gypsy moth). A decrease in the size and number of natural habitat patches increases the probability of local extirpation and loss of diversity of native species, whereas a decline in connectivity between habitat patches can negatively affect species persistence. Thus, there is empirical justification for managing entire landscapes, not just individual habitat types, in order to insure that native plant and animal diversity is maintained. A landscape is defined as an area composed of a mosaic of interacting ecosystems, or patches, with the heterogeneity among the patches significantly affecting biotic and abiotic processes in the landscape. Patches comprising a landscape are usually composed of discrete areas of relatively homogeneous environmental conditions and must be defined in terms of the organisms of interest. A large body of theoretical work in landscape ecology has provided a wealth of methods for quantifying spatial characteristics of landscapes. Recent advances in remote sensing and geographic information systems allow these methods to be applied over large areas. The objectives of this paper are to present a brief overview of common measures of landscape characteristics, to explore the new technology available for their calculation, to provide examples of their application, and to call attention to the need for collection of spatially-explicit field data.
Date: March 1, 1995
Creator: Dale, V.H.; Offerman, H.; Frohn, R. & Gardner, R.H.
Partner: UNT Libraries Government Documents Department

Vegetation management 1994 fiscal year end report

Description: This year-end report evaluates vegetation management operations on the Hanford reservation conducted during fiscal year (FY) 1994 and proposed control methods to be used in FY 1995 and following years. The 1995 control methods proposed are based on an evaluation of past and current ALARA principles, employee safety, environmental impacts, applicable regulations, site esthetics, and other site-specific factors.
Date: February 1, 1995
Creator: Rodriguez, J.M.
Partner: UNT Libraries Government Documents Department

Terrestrial habitat mapping of the Oak Ridge Reservation: 1996 Summary

Description: The US DOE is in the process of remediating historical contamination on the Oak Ridge Reservation (ORR). Two key components are ecological risk assessment and monitoring. In 1994 a strategy was developed and a specific program was initiated to implement the strategy for the terrestrial biota of the entire ORR. This document details results of the first task: development of a habitat map and habitat models for key species of interest. During the last 50 years ORR has been a relatively protected island of plant and animal habitats in a region of rapidly expanding urbanization. A preliminary biodiversity assessment of the ORR by the Nature Conservancy in 1995 noted 272 occurrences of significant plant and animal species and communities. Field surveys of threatened and endangered species show that the ORR contains 20 rare plant species, 4 of which are on the state list of endangered species. The rest are either on the state list of threatened species or listed as being of special concern. The ORR provides habitat for some 60 reptilian and amphibian species; more than 120 species of terrestrial birds; 32 species of waterfowl, wading birds, and shorebirds; and about 40 mammalian species. The ORR is both a refuge for rare species and a reservoir of recruitment for surrounding environments and wildlife management areas. Cedar barrens, river bluffs, and wetlands have been identified as the habitat for most rare vascular plant species on the ORR.
Date: September 1, 1996
Creator: Washington-Allen, R.A. & Ashwood, T.L.
Partner: UNT Libraries Government Documents Department

Managing forests as ecosystems: A success story or a challenge ahead?

Description: To manage forests as ecosystems, the many values they hold for different users must be recognized, and they must be used so that those assets are not destroyed. Important ecosystem features of forests include nutrient cycling, habitat, succession, and water quality. Over time, the ways in which humans value forests have changed as forest uses have altered and as forests have declined in size and quality. Both ecosystem science and forest ecology have developed approaches that are useful to manage forests to retain their value. A historical perspective shows how changes in ecology, legislation, and technology have resulted in modern forest-management practices. However, current forest practices are still a decade or so behind current ecosystem science. Ecologists have done a good job of transferring their theories and approaches to the forest manager classroom but have done a poor job of translating these concepts into practice. Thus, the future for ecosystem management requires a closer linkage between ecologists and other disciplines. For example, the changing ways in which humans value forests are the primary determinant of forest-management policies. Therefore, if ecologists are to understand how ecosystem science can influence these policies, they must work closely with social scientists trained to assess human values.
Date: October 1, 1997
Creator: Dale, V.H.
Partner: UNT Libraries Government Documents Department

Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO{sub 2}l. A Comparison of Loblolly and Ponderosa Pines

Description: A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity.
Date: December 1, 1996
Creator: Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B. & Ross, Peter D.
Partner: UNT Libraries Government Documents Department

Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R and D Progress

Description: Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO{sub 2} concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of standing aboveground biomass, utilization of aboveground biomass in long-lived products, or protection of carbon (organic and inorganic) compounds present in soils. There are potential co-benefits from efforts to sequester carbon in terrestrial ecosystems. For example, long-lived valuable products (wood) are produced, erosion would be reduced, soil productivity could be improved through increased capacity to retain water and nutrients, and marginal lands could be improved and riparian ecosystems restored. Another unique feature of the terrestrial sequestration option is that it is the only option that is ''reversible'' should it become desirable or permissible. For example, forests that are created are thus investments which could be harvested should CO{sub 2} emissions be reduced in other ways to acceptable levels 50-100 years from now.
Date: August 30, 2001
Creator: Jacobs, G.K.
Partner: UNT Libraries Government Documents Department

Final Report: Fine-Mesh Treatment of the Land Component of a Global Climate Model, September 1, 1994 - August 31, 1998

Description: The characteristics of land important for climate are very heterogeneous, as are the key atmospheric inputs to land, i.e. precipitation and radiation. To adequately represent this heterogeneity, state-of-the-art climate models should represent atmospheric inputs to land, land properties, and the dynamical changes of land at the highest resolution accessible by climate models. The research funded under this project focused on the development of an alternative approach to this problem in which a sub-mesh is imposed on each atmospheric model grid square. This allows representation of the land climate dynamics at a higher resolution than that achievable in the global atmospheric models. The high spatial detail of the fine-mesh treatment provides not only a more accurate representation of land processes to the atmospheric model, but also the opportunity for direct downscaling of the surface climate. The principal objectives were: (1) To complete the development of fine-mesh data structures in the VBATS model and its link to CCM2; (2) To improve BATS model parameterizations; (3) To complete and refine fine-mesh atmospheric parameterizations; and (4) To conduct sensitivity studies. The primary shift in goals has been to include and emphasize linkages to CCM3 which has been publicly released as of May 1996.
Date: August 31, 1998
Creator: Dickinson, Robert E.
Partner: UNT Libraries Government Documents Department