6,915 Matching Results

Search Results

Advanced search parameters have been applied.

Targeting the tumor microenvironment

Description: Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.
Date: November 7, 2006
Creator: Kenny, P.A.; Lee, G.Y. & Bissell, M.J.
Partner: UNT Libraries Government Documents Department

Effect of multiple and delayed jet impact and penetration on concrete target borehole diameter

Description: The effect of multiple and delayed jet impact and penetration on the borehole diameter in concrete targets is discussed in this paper. A first-order principle of shaped-charge jet penetration is that target hole volume is proportional to the energy deposited in the target by the jet. This principle is the basis for the relation that target borehole diameter at any depth along the penetration path is proportional to the jet energy deposited in the target at that location. Our current research shows that the 'jet energy per unit hole volume constant' for concrete can be substantially altered by the use of multiple and delayed jet impacts. It has been shown that enhanced entrance crater formation results from the simultaneous impact and penetration of three shaped-charge jets. We now demonstrate that enhanced borehole diameter is also observed by the simultaneous impact and penetration of multiple shaped-charge jets followed by the delayed impact and penetration of a single shaped-charge jet.
Date: January 26, 2001
Creator: Murphy, M J; Baum, D W; Kuklo, R M & Simonson, S C
Partner: UNT Libraries Government Documents Department

Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

Description: Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.
Date: May 6, 2006
Creator: Liu, C.Y.; Mao, X.L.; Greif, R. & Russo, R.E.
Partner: UNT Libraries Government Documents Department

SELEX RICH performance and physics results

Description: SELEX took data in the 1996/7 Fixed Target Run at Fermilab. The excellent performance parameters of the SELEX RICH Detector had direct influence on the quality of the obtained physics results.
Date: August 28, 2002
Creator: al., Jurgen Engelfried et
Partner: UNT Libraries Government Documents Department

Hydraulic testing of APT blanket assemblies

Description: The Thermal Fluids Laboratory (TFL) conducted hydraulic tests on two versions of the test samples of the Low Flux Blanket Assembly and on four High Flux Blanket Assemblies in support of the Area-A Tests to be conducted at Los Alamos National Laboratory (LANL). The first purpose for the tests was to check for manufacturing flaws that might have constricted cooling passages. No evidence of manufacturing flaws was found. The second purpose was to provide hydraulic information that could be used to calculate orifice sizes for limiting flow to the assemblies after installation. During the TFL hydraulic tests differential pressures were measured for the six pieces of hardware as functions of water flowrate. In all cases differential pressure was proportional to flowrate squared. The particular functional relationships needed by LANL are listed in graphical and tabular form.
Date: May 1, 1996
Creator: Steimke, J.L.
Partner: UNT Libraries Government Documents Department

Measurements of MeV photon flashes in petawatt laser experiments

Description: Planar targets illuminated by the Petawatt laser system emit directed beams of photons with energies of MeVs. The laser pulses have durations of 0.5 or 5 psec, on target energies in excess of 100 joules, and focal-spot sizes that vary from 10 to 100 µm, producing peak intensities greater than 10<sup>19</sup> watts/cm<sup>;2</sup>. Arrays of PIN diodes, dosimeters and nuclear-activation detectors measure the angular distributions of photons with energies greater than 0.5 MeV. The PIN diodes, with 1 cm<sup>2</sup> by 500-µm sensitive volume, are housed in lead pigs with 2.5-cm thick walls. Measured emission intensities have been as high as 5x10<sup>13</sup> (gamma) MeV/steradian. The angular distributions are highly directed in forward directions, with significant variations on a shot-to-shot basis. Backward radiated intensities tend to be more than a decade lower than in forward direct
Date: November 10, 1998
Creator: Phillips, T.; Brown, C. G.; Cowan, T.; Hatchett, S.; Hunt, A.; Key, M. et al.
Partner: UNT Libraries Government Documents Department

Support Facility for a Graphite Target Neutrino Factory

Description: The Target Support Facility for a Neutrino Producing Research Facility extends from the pretarget, primary beam focusing region to the end of the decay channel. Technical components include the target, beam absorber, and solenoid magnetic-field focusing system. While the ultimate goal is to target about 4 MW of proton beam in the target area., smaller values and different target materials (e.g., low Z) are considered to facilitate the first step. As detailed in this report, a carbon target was chosen with an incident primary beam power of 1.5 MW, The target is embedded in a high-field solenoid magnet of 20 T, followed by a transition section channel, where the field tapers down to 1.25 T. An iterative design process has been carried out which optimizes Monte Carlo code flux projections with realistic magnetic-field parameters. The severe radiation environment and component shielding requirements strongly influence design choices. The overall system design includes the capture and decay channel solenoids, the design parameters of which were provided by the National High Magnetic Field Laboratory. This design balances resistive and superconducting magnet contributions. Facility requirements, including shielding, remote handling, radioactive water system, etc. are based on the final design goal of 4 MW. The extent of the Target Support Facility and radiation-handling equipment includes the 50-m decay channel, where remote-handling operations are also required.
Date: August 1, 2000
Creator: Spampinato, P.T.; Chesser, J.B.; Gabriel, T.A.; Gallmeier, F.X.; Haines, J.R.; Lillie, R.A. et al.
Partner: UNT Libraries Government Documents Department

Overcoming Thermal Shock Problems in Liquid Targets

Description: Short pulse accelerator-driven neutron sources such as the Spallation Neutron Source (SNS) employ high-energy proton beam energy deposition in heavy metal (such as mercury) over microsecond time frames. The interaction of the energetic proton beam with the mercury target leads to very high heating rates in the target. Although the resulting temperature rise is relatively small (a few {degree}C ), the rate of temperature rise is enormous ({approximately}10{sup 7} C/s) during the very brief beam pulse ({approximately}0.58 {micro}s). The resulting thermal-shock induced compression of the mercury leads to the production of large amplitude pressure waves in the mercury that interact with the walls of the mercury target and the bulk flow field. Safety-related operational concerns exist in two main areas, viz., (1) possible target enclosure failure from impact of thermal shocks on the wall due to its direct heating from the proton beam and the loads transferred from the mercury compression waves, and (2) impact of the compression-cum-rarefaction wave-induced effects such as cavitation bubble emanation and fluid surging. Preliminary stress evaluations indicate stress levels approaching yielding conditions and beyond in select regions of the target. Also, the induction of cavitation (which could assist in attenuation) can also release gases that may accumulate at undesirable locations and impair heat transfer.
Date: June 2000
Creator: Taleyarkhan, R. P. & Kim, S. H.
Partner: UNT Libraries Government Documents Department

Measurement Strategies for Remote Sensing Applications

Description: Remote sensing has grown to encompass many instruments and observations, with concomitant data from a huge number of targets. As evidenced by the impressive growth in the number of published papers and presentations in this field, there is a great deal of interest in applying these capabilities. The true challenge is to transition from directly observed data sets to obtaining meaningful and robust information about remotely sensed targets. We use physics-based end-to-end modeling and analysis techniques as a framework for such a transition. Our technique starts with quantified observables and signatures of a target. The signatures are propagated through representative atmospheres to realistically modeled sensors. Simulated data are then propagated through analysis routines, yielding measurements that are directly compared to the original target attributes. We use this approach to develop measurement strategies which ensure that our efforts provide a balanced approach to obtaining substantive information on our targets.
Date: March 6, 1999
Creator: Weber, P.G.; Theiler, J.; Smith, B.; Love, S.P.; LaDelfe, P.C.; Cooke, B.J. et al.
Partner: UNT Libraries Government Documents Department

Analysis of interaction phenomena between liquid jets and materials. Revision 1

Description: The interaction phenomena of high-velocity liquid jets impinging on a material surface have been investigated theoretically and experimentally to understand the physics of material removal by jet-machining processes. Experiments were performed to delineate conditions under which liquid jet impacts will cause mass removal, and to determine optimum jet-cutting conditions. Theoretical analyses have also been carried out to study the effects of multiple jet-droplet impacts on a target surface as a material deformation mechanism. The calculated target response and spallation behavior following droplet impacts and their physical implications are also discussed.
Date: April 1, 1995
Creator: Kang, S.W.; Reitter, T. & Carlson, G.
Partner: UNT Libraries Government Documents Department

The future of fixed target physics: Snowmass E5 working group summary

Description: Fixed target experimentation remains a vigorous and important tool. In many cases it provides the best technique to study elementary physics. Here the authors explore several areas, where, in the near future, fixed target experiments have the potential to alter the understanding of physics. These include, but are clearly not limited to, high precision tests of CP violation in the Kaon sector, ultra-precise determination of the weak mixing angle and its evolution, and lepton flavor violation.
Date: December 10, 2002
Creator: al., Krishna Kumar et
Partner: UNT Libraries Government Documents Department

Energetic Proton Generation in Ultra-Intense Laser-Solid Interactions

Description: An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 10{sup 20} W/cm{sup 2}, high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, we attempt to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of microns, whereupon they end up being detected in the radiographic and spectrographic detectors.
Date: March 1, 2000
Creator: Wilks, S.C.; Langdon, A.B.; Cowan, T.E.; Roth, M.; Singh, M.; Hatchett, S. et al.
Partner: UNT Libraries Government Documents Department

Slip stacking

Description: We have started beam studies for ''slip stacking''[1] in the Main Injector in order to increase proton intensity on a target for anti-proton production. It has been verified that the system for slip stacking is working with low intensity beam. For a high intensity operation, we are developing a feedback[2][3] and feedforward system.
Date: September 19, 2002
Creator: Steimel, Kiyomi Koba and James
Partner: UNT Libraries Government Documents Department

Deep Levels in p- and n-type InGaAsN for High Efficiency Multi-Junction III-V Solar Cells

Description: Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.
Date: November 11, 1999
Partner: UNT Libraries Government Documents Department

Mask roughness induced LER: a rule of thumb -- paper

Description: Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness of 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.
Date: March 12, 2010
Creator: McClinton, Brittany & Naulleau, Patrick
Partner: UNT Libraries Government Documents Department

SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging

Description: This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.
Date: May 22, 2010
Creator: Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P. & Oliveira, I.N.S.
Partner: UNT Libraries Government Documents Department

Carbon Trading Protocols for Geologic Sequestration

Description: Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-year phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.
Date: August 7, 2008
Creator: Hoversten, Shanna
Partner: UNT Libraries Government Documents Department

Transmitted Laser Beam Diagnostic at the Omega Laser Facility

Description: We have developed and commissioned a transmitted beam diagnostic (TBD) for the 2{omega} high intensity interaction beam at the Omega laser facility. The TBD consists of a bare-surface reflector mounted near the target, which collects and reflects 4% of the transmitted light to a detector assembly outside the vacuum chamber. The detector includes a time integrating near-field camera that measures beam spray, deflection and the absolute transmitted power. We present a detailed description of the instrument and the calibration method and include first measurements on laser heated gasbag targets to demonstrate the performance of the diagnostic.
Date: April 1, 2004
Creator: Niemann, C; Antonini, G; Compton, S; Glenzer, S; Hargrove, D; Moody, J et al.
Partner: UNT Libraries Government Documents Department