853 Matching Results

Search Results

Advanced search parameters have been applied.

Transport Processes in Synchrotrons

Description: This thesis examines the evolution of beams in synchrotrons. Following an introduction to accelerator physics in Chapter 1, in Chapter 2 I describe the Fermilab E778 'diffusion' experiment. Families of sextupoles were powered to drive the 2/5 resonance, and a beam was then kicked to populate a nonlinear region of the transverse phase space. The beam was then observed over periods of approximately 30 minutes for a variety of kick amplitudes and physical apertures. In Chapter 3 comments about the analytic treatment of such systems are discussed, including the assumptions inherent in the conventional treatment. I motivate my use of a simplified model in Chapter 4 after examining common computational methods. Deriving the model from the formalism of traditional accelerator physics, I discuss its implementation on a massively parallel computer, the Intel iPSC/860 hypercube, and examine the performance of this algorithm in detail. Using the simple model to perform the numerical experiment equivalent to E778 is the subject of Chapter 5. I derive the parameters needed for the simple model based upon the physical experiment. Both three dimensional cases and cases with reduced dimensionality are run. From power supply ripple data and an electrical model of the magnet string, I compute tune modulation depths, and a subset of these are run. I conclude that tune modulation from power supply ripple is not a significant source of transport for this system. In Chapter 6, the intensities of the beams are used to compare the experimental and numerical runs, using both exponential and algebraic decays, and the algebraic form is seen to provide a better fit. The agreement between numerical and experimental results is best for fully three-dimensional runs, but the numerical results show slower decay than the experimental. Individual particles are examined, whose motion consists of stochastic motion interspersed with regular ...
Date: May 1994
Creator: Cole, Benjamin H. (Benjamin Holland)
Partner: UNT Libraries


Description: Because the time of flight in a linear non-scaling FFAG depends on the transverse amplitude, motion in the longitudinal plane will be different for different transverse particle amplitudes. This effect, if not considered, will lead the failure of a substantial portion of the beam to be accelerated. I will first briefly review this effect. Then I will outline some techniques for addressing the problems created by the effect. In particular, I will discuss partially correcting the chromaticity and increasing the energy gain per cell. I will discuss potential problems with another technique, namely the introduction of higher harmonic cavities.
Date: November 6, 2006
Creator: Berg, J. S.
Partner: UNT Libraries Government Documents Department

Magnets for high intensity proton synchrotrons

Description: Recently, there has been considerable interest at Fermilab for the Proton Driver, a future high intensity proton machine. Various scenarios are under consideration, including a superconducting linac. Each scenario present some special challenges. We describe here the magnets proposed in a recent study, the Proton Driver Study II, which assumes a conventional warm synchrotron, roughly of the size of the existing FNAL booster, but capable of delivering 380 kW at 8 GeV.
Date: September 19, 2002
Creator: Jean-Francois Ostiguy, Vladimir Kashikhine and Alexander Makarov
Partner: UNT Libraries Government Documents Department

X-ray resonant scattering studies of charge and orbital ordering in Pr{sub 1{minus}z}, Ca{sub x}, MnO{sub 3}

Description: We present the results of x-ray scattering studies of the charge and orbital ordering in the manganite series Pr{sub 1{minus}z}, Ca{sub x}, MnO{sub 3} with x = 0.25, 0.4 and 0.5. The polarization and azimuthal dependence of the charge and orbital ordering in these compounds is characterized both in the resonant and nonresonant limits, and compared with the predictions of current theories. The results are qualitatively consistent with both cluster and LDA+U calculations of the electronic structure.
Date: August 14, 2000
Partner: UNT Libraries Government Documents Department

A Synchrotron phase detector for the Fermilab Booster

Description: A synchrotron phase detector is diagnostic tool for measuring the relative phase between the accelerating field and the beam. One has been implemented in the Fermilab Booster. This is probably the first time for the Booster that the accelerating voltage seen by the beam can be experimentally determined from the information of the synchrotron phase measurement and the existing total rf accelerating voltage (RFSUM) signal without using the calculated synchrotron phase values.
Date: March 17, 2004
Creator: Yang, Xi & Padilla, Rene D
Partner: UNT Libraries Government Documents Department

Difference between BPM reading one bunch and the average of multi-bunch in Booster

Description: Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.
Date: August 18, 2004
Creator: Yang, Xi
Partner: UNT Libraries Government Documents Department

Applying synchrotron phase measurement to the estimation of maximum beam intensity in the Fermilab Booster

Description: It is important to have experimental methods to estimate the maximum beam intensity for the Fermilab Booster as objective input into long term program commitments. An important existing limit is set by the available rf power. This limit is difficult to set a priori, because the real longitudinal impedance is not well known. The synchrotron phase at transition crossing was measured using both the mountain range plot and the direct phase measurement of the RF accelerating voltage relative to the beam, and results were consistent. They were applied to predict 6 x 10{sup 12} maximum Booster beam intensity with present running conditions.
Date: March 16, 2004
Creator: Yang, Xi & MacLachlan, James
Partner: UNT Libraries Government Documents Department

Beam diagnostics via model independent analysis of the turn-by-turn BPM data

Description: Model independent analysis (MIA) can be used to obtain all the eigen modes included in the turn-by-turn BPM data. Not only the synchrotron tune and betatron tune can be obtained from the fast Fourier transforms (FFT) of the temporal eigen vector of the corresponding mode, but also the error mode, which could be caused by the different gain of a BPM, can be observed in both the temporal and spatial eigen vectors of the error mode. It can be applied as a diagnostic tool for Booster.
Date: August 11, 2004
Creator: Yang, Xi
Partner: UNT Libraries Government Documents Department


Description: This note addresses the various options for the Rapid Cycling Medical Synchrotron (RCMS) RF. The study was divided into three cases, namely non-tuning, tuning and filter. Each case also includes a few options. The primary study was focused on the non-tuning options. However, it was found that it requires too much driver power to cover the wide band and thus causes the cost being too high to be competitive. The proposal of RCMS is not yet clear if it can be approved or not. The results of this study might be useful to other similar machines.
Date: January 22, 2003
Creator: ZHAO,Y.
Partner: UNT Libraries Government Documents Department

Strangelet Search at the BNL Relativistic Heavy Ion Collider

Description: We have searched for strangelets in a triggered sample of 61 million central (top 4percent) Au+Au collisions at sqrt sNN = 200 GeV near beam rapidities at the STAR solenoidal tracker detector at the BNL Relativistic Heavy Ion Collider. We have sensitivity to metastable strangelets with lifetimes of order>_0.1 ns, in contrast to limits over ten times longer in BNL Alternating Gradient Synchrotron (AGS) studies and longer still at the CERN Super Proton Synchrotron (SPS). Upper limits of a few 10-6 to 10-7 per central Au+Au collision are set for strangelets with mass>~;;30 GeV/c2.
Date: November 27, 2005
Creator: Ritter, Ha
Partner: UNT Libraries Government Documents Department

Measurement of coupling resonance driving terms with the AC dipole

Description: Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.
Date: October 1, 2010
Creator: Miyamoto, R.
Partner: UNT Libraries Government Documents Department

Spin Rotation of Formalism for Spin Tracking

Description: The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.
Date: February 1, 2008
Creator: Luccio,A.
Partner: UNT Libraries Government Documents Department

A Four Cell Lattice for the UCLA Compact Light Source Synchrotron

Description: The 1.5 GeV compact light source UCS proposed for UCLA must fit into a shielded vault that is 9.144 meters (30 feet) wide. In order for the machine to fit into the allowable space, the ring circumference must be reduced 36 meters, the circumference of the six cell lattice, to something like 26 or 27 meters. The four cell lattice described in this report has a ring circumference of 27.0 meters.
Date: March 12, 1999
Creator: Garren, A.A. & Green, M.A.
Partner: UNT Libraries Government Documents Department

Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

Description: A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.
Date: January 2, 2010
Creator: De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J. & Carlson, B.
Partner: UNT Libraries Government Documents Department

The FIRST-2MASS Red Quasar Survey

Description: Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.
Date: June 28, 2007
Creator: Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D & Lacy, M
Partner: UNT Libraries Government Documents Department

History of the ZGS 500 MeV booster.

Description: The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).
Date: May 9, 2006
Creator: Simpson, J.; Martin; R. & Kustom, R.
Partner: UNT Libraries Government Documents Department

Recovering the Elemental Composition of Comet Wild 2 Dust in Five Stardust Impact Tracks and Terminal Particles in Aerogel

Description: The elemental (non-volatile) composition of five Stardust impact tracks and terminal particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray scanning microprobe with full fluorescence spectra at each pixel. Because aerogel includes background levels of several elements of interest, we employ a novel 'dual threshold' approach to discriminate against background contaminants: an upper threshold, above which a spectrum contains cometary material plus aerogel and a lower threshold below which it contains only aerogel. The difference between normalized cometary-plus-background and background-only spectra is attributable to cometary material. The few spectra in between are discarded since misallocation is detrimental: cometary material incorrectly placed in the background spectrum is later subtracted from the cometary spectrum, doubling the loss of reportable cometary material. This approach improves precision of composition quantification. We present the refined whole impact track and terminal particle elemental abundances for the five impact tracks. One track shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass (13%) by dual thresholds compared to a single threshold. Major elements Fe and Ni are not significantly affected. The additional Cr arises from cometary material containing little Fe. We exclude Au intermixed with cometary material because it is found to be a localized surface contaminant carried by comet dust into an impact track. The dual threshold technique can be used in other situations where elements of interest in a small sample embedded in a matrix are also present in the matrix itself.
Date: January 4, 2007
Creator: Ishii, H A; Brennan, S; Bradley, J P; Luening, K; Ignatyev, K & Pianetta, P
Partner: UNT Libraries Government Documents Department

Modeling of EUV photoresists with a resist point spreadfunction

Description: Extreme ultraviolet (EUV) lithography is under development for possible deployment at the 32-nm technology node. One active area of research in this field is the development of photoresists that can meet the stringent requirements (high resolution, high sensitivity, low LER, etc.) of lithography in this regime. In order to facilitate research in this and other areas related to EUV lithography, a printing station based upon the 0.3-NA Micro Exposure Tool (MET) optic was established at the Advanced Light Source, a synchrotron facility at Lawrence Berkeley National Laboratory. A resist modeling technique using a resist point spread function has been shown to have good agreement with experiments for certain EUV resists such as Shipley EUV-2D [2]. The resist point spread function is a two-dimensional function that, when convolved with the simulated aerial image for a given mask pattern and applied to a threshold function, gives a representation of the photoresist pattern remaining after development. The simplicity of this modeling approach makes it attractive for rapid modeling of photoresists for process development applications. In this work, the resist point spread functions for three current high-resolution EUV photoresists [Rohm and Haas EUV-2D, Rohm and Haas MET-1K (XP 3454C), and KRS] are extracted experimentally. This model is then used in combination with aerial image simulations (including effects of projection optic aberrations) to predict the resist pattern for a variety of test patterns. A comparison is made between these predictions and experimental results to evaluate the effectiveness of this modeling technique for newer high-resolution EUV resists.
Date: January 1, 2005
Creator: Cain, Jason P.; Naulleau, Patrick & Spanos, Costas J.
Partner: UNT Libraries Government Documents Department

Simulations on the AGS horizontal tune jump mechanism

Description: A new horizontal tune jump mechanism has been proposed to overcome the horizontal intrinsic resonances and preserve the polarization of the proton beam in the Alternating Gradient Synchrotron (AGS) during the energy ramp. An adiabatic change of the AGS lattice is needed to avoid the emittance growth in both horizontal and vertical planes, as the emittance growth can deteriorate the polarization of the proton beam. Two critical questions are necessary to be answered: how fast can the lattice be changed and how much emittance growth can be tolerated from both optics and polarization points of view? Preliminary simulations, using a realistic AGS lattice and acceleration rate, have been carried out to give a first glance of this mechanism. Results with different optics are presented in this paper.
Date: May 4, 2009
Creator: Lin,F.; Huang, H.; Luccio, A. U. & Roser, T.
Partner: UNT Libraries Government Documents Department