11 Matching Results

Search Results

Advanced search parameters have been applied.

Understanding gas-surface interactions from direct force measurements using a specialized torsion balance

Description: The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N{sub 2}, CO, CO{sub 2}, and H{sub 2}, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO{sub 2}-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0{degrees} to 85{degrees}. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.
Date: December 31, 1996
Creator: Cook, S.R. & Hoffbauer, M.A.
Partner: UNT Libraries Government Documents Department

Dynamic simulation tools for the analysis and optimization of novel collection, filtration and sample preparation systems

Description: The focus of research effort described here is to develop novel simulation tools to address design and optimization needs in the general class of problems that involve species and fluid (liquid and gas phases) transport through sieving media. This was primarily motivated by the heightened attention on Chem/Bio early detection systems, which among other needs, have a need for high efficiency filtration, collection and sample preparation systems. Hence, the said goal was to develop the computational analysis tools necessary to optimize these critical operations. This new capability is designed to characterize system efficiencies based on the details of the microstructure and environmental effects. To accomplish this, new lattice Boltzmann simulation capabilities where developed to include detailed microstructure descriptions, the relevant surface forces that mediate species capture and release, and temperature effects for both liquid and gas phase systems. While developing the capability, actual demonstration and model systems (and subsystems) of national and programmatic interest were targeted to demonstrate the capability. As a result, where possible, experimental verification of the computational capability was performed either directly using Digital Particle Image Velocimetry or published results.
Date: February 12, 2006
Creator: Clague, D; Weisgraber, T; Rockway, J & McBride, K
Partner: UNT Libraries Government Documents Department

Soil Water Retention and Relative Permeability for Full Range of Saturation

Description: Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.
Date: September 28, 2010
Creator: Zhang, Z. F.
Partner: UNT Libraries Government Documents Department

Interfacial adhesion at the molecular level

Description: Interfacial adhesion is of extraordinary technological importance and has long been of intense scientific interest. However, the study of the adhesive bond and its failure is made difficult by the complexity of the interfacial interaction and the problems involved with establishing carefully characterized and controlled interfacial surfaces and that of quantitatively evaluating the bonding after its formation. In the present work, we outline the results of studies using Interfacial Force Microscopy (IFM) to study the adhesive bond formation and failure between (1) differing end-group combinations on self-assembling monolayer (SAM) films covering Au surfaces and (2) between clean surfaces of a W probe and a Au single-crystal sample. The IFM is a scanning probe technique distinguished by its use of a mechanically stable, zero-compliance force sensor. This sensor permits the study of the interfacial force as a function of separation without the mechanical instability giving rise to the {open_quotes}jump-to-contact{close_quotes} seen in all presently used displacement-based sensors, such as the surface forces apparatus and the atomic force microscope. Thus, information can be obtained concerning the details of the adhesive bond formation and failure over the entire range of the interfacial interaction. We demonstrate that such measurements yield valuable quantitative information concerning the individual bond strengths between chemically distinct SAM end groups and show that the clean metal-surface interaction is dominated by surface roughness and plastic deformation.
Date: December 31, 1997
Creator: Houston, J.E.; Michalske, T.A. & Crooks, R.M.
Partner: UNT Libraries Government Documents Department

Development report for dual-burst disks

Description: Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.
Date: November 1, 1996
Creator: Fusco, A.M.
Partner: UNT Libraries Government Documents Department

Convergence and accuracy of kernel-based continuum surface tension models

Description: Numerical models for flows of immiscible fluids bounded by topologically complex interfaces possessing surface tension inevitably start with an Eulerian formulation. Here the interface is represented as a color function that abruptly varies from one constant value to another through the interface. This transition region, where the color function varies, is a thin O(h) band along the interface where surface tension forces are applied in continuum surface tension models. Although these models have been widely used since the introduction of the popular CSF method [BKZ92], properties such as absolute accuracy and uniform convergence are often not exhibited in interfacial flow simulations. These properties are necessary if surface tension-driven flows are to be reliably modeled, especially in three dimensions. Accuracy and convergence remain elusive because of difficulties in estimating first and second order spatial derivatives of color functions with abrupt transition regions. These derivatives are needed to approximate interface topology such as the unit normal and mean curvature. Modeling challenges are also presented when formulating the actual surface tension force and its local variation using numerical delta functions. In the following they introduce and incorporate kernels and convolution theory into continuum surface tension models. Here they convolve the discontinuous color function into a mollified function that can support accurate first and second order spatial derivatives. Design requirements for the convolution kernel and a new hybrid mix of convolution and discretization are discussed. The resulting improved estimates for interface topology, numerical delta functions, and surface force distribution are evidenced in an equilibrium static drop simulation where numerically-induced artificial parasitic currents are greatly mitigated.
Date: December 1, 1998
Creator: Williams, M.W.; Kothe, D.B. & Puckett, E.G.
Partner: UNT Libraries Government Documents Department

Restoring force method and response estimation

Description: The restoring force method is briefly outlined. Signal modifications that are necessary to successfully determine restoring force functions are discussed and illustrated. Restoring force functions for a base and a force excited system were determined and their effectiveness demonstrated by comparing measured and predicted signals. Additional developments that would make the restoring force method more general are suggested. 5 refs., 12 figs.
Date: January 1, 1989
Creator: Endebrock, E.G.
Partner: UNT Libraries Government Documents Department

Force state mapping using experimental data

Description: Techniques for the characterization and analysis of linear systems are well developed. Many techniques applicable to linear systems have limited applicability for nonlinear systems. In dealing with nonlinear systems, numerous new techniques are under development. New methods which are specifically tailored for nonlinear systems include force state mapping, difference equation techniques, and higher order frequency response functions. The force state mapping technique was introduced by Tomlinson and Worden. Their work is in turn based on a system identification procedure introduced by Masri and Caughey. In this paper we apply the technique to a linear system and to several types of nonlinear second order systems. In particular, we emphasize application of the technique to motion across a nonlinear joint or interface. For second order systems, this approach is quite straightforward, and the major problem is the development and application of techniques for dealing with noisy data. Extension of the technique to multi-degree-of-freedom systems requires explicit computation of the mass associated with each measurement location. Possible techniques for determining the magnitude of these mass terms are introduced as extensions of the technique for multi-degree-of-freedom systems. Either local or global estimation schemes may be used to determine the shape of the fitted surfaces. We emphasize global parameter estimation techniques for surfaces and apply these global estimation techniques in the time and frequency domains. 6 refs., 6 figs.
Date: January 1, 1989
Creator: Hunter, N.F. Jr.; Paez, T. & Gregory, D.L.
Partner: UNT Libraries Government Documents Department

Transport processes and interfacial phenomena in an evaporating meniscus

Description: When a liquid film wets a solid surface, a contact line region is formed where the vapor, liquid and solid phases are in close proximity. The film thickness in this region varies from about 10 {mu}m (Capillary Meniscus) to less than about 100 nm (Adsorbed film). In addition to being functions of temperature and pressure (as for a bulk phase), the thermodynamic properties (e.g., chemical potential) of these thin films depend on their shape (curvature) and thickness due to surface forces. The coupled transport processes and interfacial phenomena occurring in this microscopic region are also controlled by these surface forces. The objective of this paper is to report experimental data which complement earlier analytical models of this region. The experimental setup consists of a flat silicon plate partially immersed at a small angle, {theta}, in a pool of liquid. The plate is in a closed cell and a spreading liquid (1,1,2-Trichlorotrifluoro ethane), in equilibrium with its own vapor, forms a zero contact angle with the plate. The plate can be electrically heated at the upper end by supplying power to a thin, rectangular platinum heater which is painted on the backside of the silicon wafer. The meniscus thickness profile, which is related to the effective pressure in the liquid, was used as a probe for understanding the sensitivity of the meniscus to the non-equilibrium effects associated with evaporation/condensation mechanisms. 5 refs., 8 figs.
Date: January 1, 1991
Creator: Sujanani, M. & Wayner, P. C., Jr.
Partner: UNT Libraries Government Documents Department

Interfacial force sensor with force-feedback control

Description: A new interfacial force microscope capable of measuring the forces between two surfaces over the entire range of surface separations, up to contact, has been developed. The design is centered around a differential capacitance displacement sensor where the common capacitor plate is supported by torsion bars. A force-feedback control system balances the interfacial forces at the sensor, maintaining the common capacitor plate at its rest position. This control eliminates the instability which occurs with the conventional cantilever-based force sensors when the attractive force gradient exceeds the mechanical stiffness of the cantilever. The ability to measure interfacial forces at surface separations smaller than this instability point using the feedback control is demonstrated. 11 refs., 3 figs.
Date: January 1, 1990
Creator: Joyce, S.A.; Houston, J.E. & Smith, B.K.
Partner: UNT Libraries Government Documents Department