13 Matching Results

Search Results

Advanced search parameters have been applied.

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

Description: This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.
Date: August 4, 1994
Creator: Rogers, J. D.
Partner: UNT Libraries Government Documents Department

Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

Description: Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a facilitated transport ...
Date: November 1, 2007
Creator: Luebke, D.R.; Ilconich, J.B.; Myers, C.R. & Pennline, H.W.
Partner: UNT Libraries Government Documents Department

Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996

Description: During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents; membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.
Date: December 31, 1996
Partner: UNT Libraries Government Documents Department

Carbon Dioxide Separation with Supported Ionic Liquid Membranes

Description: Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.
Date: April 1, 2007
Creator: Luebke, D.R.; Ilconich, J.B.; Myers, C.R. & Pennline, H.W.
Partner: UNT Libraries Government Documents Department

Novel macrocyclic carriers for proton-coupled liquid membrane transport. Final report

Description: The objective of this research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period. In addition, new, more convenient synthetic routes were achieved for several nitrogen-containing bicyclic and tricyclic macrocycles. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber and other membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. A study of the effect of methoxyalkyl macrocycle substituents on metal ion transport was completed. A new calorimeter was constructed which made it possible to study the thermodynamics of macrocycle-cation binding to very high temperatures. Measurements of thermodynamic data for the interaction of crown ethers with alkali and alkaline earth cations were achieved to 473 K. Molecular modeling work was begun for the first time on this project and fundamental principles were identified and developed for the establishment of working models in the future.
Date: August 24, 1996
Creator: Lamb, J.D.; Izatt, R.M.; Bradshaw, J.S. & Shirts, R.B.
Partner: UNT Libraries Government Documents Department

Task 9 - centrifugal membrane filtration. Semi-annual report April 1--September 30, 1996

Description: This report assesses a centrifugal membrane filtration technology developed by SpinTek Membrane Systems, Inc. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. The Tank Waste Focus Area was chosen for study. Membrane-screening tests were performed with the STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{mu}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the centrifugal membrane filtration unit with a surrogate tank waste solution. The performance of the unit was evaluated with a statistical test design that determined the effect of temperature, pressure, membrane rotational speed, and solids loading on permeate flux. All four variables were found to be statistically significant, with the magnitude of the effect in the order of temperature, solids loading, rotor speed, and pressure. Temperature, rotor speed, and pressure had an increasing effect on flux with increasing value, while increases in solids loading showed a decrease in permeate flux. Significant interactions between rotor speed and solids loading and pressure and solids loading were also observed. The regression equation derived from test data had a correlation coefficient of 0.934, which represents a useful predictive capability for integrating the technology into DOE cleanup efforts. An extended test run performed on surrogate waste showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.
Date: May 1, 1997
Creator: Stepan, D.J.; Moe, T.A. & Collings, M.E.
Partner: UNT Libraries Government Documents Department

ASSESSMENT OF LIQUID EMULSION MEMBRANE FOR CLEAN UP OF AQUEOUS WASTE EFFLUENTS FROM HAZARDOUS ELEMENTS

Description: Four liquid emulsion membrane (LEM) systems are given to remove different hazardous elements such as uranium, thorium, cobalt, copper, lead, and cadmium from different aqueous waste effluents. The optimum conditions for use of these systems are deduced. The potentiality of LEM for removal of hazardous pollutants from aqueous waste solutions is given.
Date: February 27, 2003
Creator: El-Reefy, Sohair A.; Selim, Y.T.; Hassan, M.A. & Aly, H.F.
Partner: UNT Libraries Government Documents Department

The effect of porous support composition and operating parameters on the performance of supported liquid membranes

Description: Factors, such as porous support composition and operating parameters, that influence the performance of supported liquid membranes (SLMs) were investigated. SLMs of varying porous support compositions and structures were studied for the transport of metal ions. A microporous polybenzimidazole support was synthesized and prepared in the form of an SLM. This SLM containing the selective extractant di-(2-ethylhexyl)phosphoric acid was evaluated for the transport of copper and neodymium. Dramatically improved performance over that of commercially available membranes was found in tests for removing the metal ions from solution. Metal ion transport reaches near completion in less than 3 hours, whereas Celgard-polypropylene and Nuclepore-polycarbonate reaches only 50% completion even after 15 hours. The transport driving force for acidic extractants is a pH gradient between the feed and strip solutions. Polybenzimidazole, an acid- and radiation-resistant polymer, has two protonatable tertiary nitrogens per repeat unit that may help sustain the pH driving force. Another factor may be the ability of the polybenzimidazole to hydrogen bond with the extractant. Transport through the flat-sheet SLMs were tested using a unique cell design. Countercurrent flow of the feed and strip solutions was established through machined channels in half-cell faceplates that are in a spiral, mirror-image pattern with respect to each other, with the flat-sheet SLM interposed between the two channeled solutions. 7 refs., 14 figs.
Date: February 1, 1991
Creator: Takigawa, D.Y.
Partner: UNT Libraries Government Documents Department

Novel macrocyclic carriers for proton-coupled liquid membrane transport

Description: The objective of our research program is to elucidate the chemical principles which are responsible for the cation selectivity and permeability of liquid membranes containing macrocyclic carriers. Several new macrocyclic carriers were synthesized during the last three year period, including selenium-containing macrocycles, new crown-4 structures, and several new crown structures containing nitrogen based heterocycles as substituents in the principal macrocyclic ring. The cation binding properties of these macrocycles were investigated by potentiometric titration, calorimetric titration, solvent extraction, and NMR techniques. In addition, hydrophobic macrocycles were incorporated into dual hollow fiber membrane systems to investigate their membrane performance, especially in the proton-coupled transport mode. It was found that the dual hollow fiber system maintains the cation selectivity and permeability of supported liquid membranes, while enhancing membrane stability. The diffusion limited transport model was expanded to account for membrane solvent effects. Furthermore, Eu{sup 2+} transport was found to be similar to that of strontium and much higher than that of the lanthanides, in supported liquid membrane systems.
Date: June 10, 1991
Creator: Lamb, J.D.
Partner: UNT Libraries Government Documents Department

Double liquid membrane system for the removal of actinides and lanthanides from acidic nuclear wastes

Description: Supported liquid membranes (SLM), consisting of an organic solution of n-octyl-(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and tributyl-phosphate (TBP) in decalin are able to perform selective separation and concentration of actinide and lanthanide ions from aqueous nitrate feed solutions and synthetic nuclear wastes. In the membrane process a possible strip solution is a mixture of formic acid and hydroxylammonium formate (HAF). The effectiveness of this strip solution is reduced and eventually nullified by the simultaneous transfer through the SLM of nitric acid which accumulates in the strip solution. A possible way to overcome this drawback is to make use of a second SLM consisting of a primary amine which is able to extract only HNO/sub 3/ from the strip solution. In this work the results obtained by experimentally studying the membrane system: synthetic nuclear waste/CMPO-TBP membrane/HCOOH-HAF strip solution/primary amine membrane/NaOH solution, are reported. They show that the use of a second liquid membrane is effective in controlling the HNO/sub 3/ concentration in the strip solution, thus allowing the actinide and lanthanide ions removal from the feed solution to proceed to completion. 15 refs., 10 figs., 1 tab.
Date: January 1, 1985
Creator: Chiarizia, R. & Danesi, P.R.
Partner: UNT Libraries Government Documents Department

An application of supported liquid membranes for removal of inorganic contaminants from groundwater

Description: This review paper summarizes the results of an investigation on teh use of supported liquid membranes for the removal of uranium (VI) and some anionic contaminants (technetium(VII), chromium(VI) and nitrates) from the Hanford site groundwater. As a membrane carrier for U(VI), bis(2,4,4-trimethylpentyl)phosphinic acid was selected because of its high selectivity over calcium and magnesium. The water soluble complexing agent 1-hydroxyethane-1,1-diphosphonic acid was used as stripping agent. For the anionic contaminants the long-chain aliphatic amines Primene JM-T (primary)., Amberlite LA-1 (secondary) and trilaurylamine (tertiary) were investigated as membrane carriers. Among these amines, Amberlite LA-2 proved to be the most effective carrier for the simultaneous removal of the investigated anion contaminants. A good long-term stability (at least one month) of the liquid membranes was obtained, especially in the uranium(VI) removal. 8 refs., 4 figs., 4 tabs.
Date: January 1, 1991
Creator: Chiarizia, R. (Argonne National Lab., IL (United States) Westinghouse Hanford Co., Richland, WA (United States)); Horwitz, E.P. (Argonne National Lab., IL (United States)) & Hodgson, K.M. (Westinghouse Hanford Co., Richland, WA (United States))
Partner: UNT Libraries Government Documents Department