304 Matching Results

Search Results

Advanced search parameters have been applied.

Performance experience with the CEBAF SRF cavities

Description: The full complement of 169 pairs of niobium superconducting cavities has been installed in the CEBAF accelerator. This paper surveys the performance characteristics of these cavities in vertical tests, commissioning in the tunnel, and operational experience to date. Although installed performance exceeds specifications, and 3.2 GeV beam has been delivered on target, present systems do not consistently preserve the high performance obtained in vertical dewar tests as operational capability. Principal sources of these limitations are discussed.
Date: December 31, 1995
Creator: Reece, C.; Benesch, J.; Drury, M.; Hovater, C.; Mammosser, J. & Preble, J.
Partner: UNT Libraries Government Documents Department

Arcing phenomena on CEBAF RF-windows at cryogenic temperatures

Description: During the CEBAF commissioning tests some of the superconducting cavities had light emitting discharges (arcing) which were observed in the guard vacuum space between a warm polymeric rf window and the cold ceramic rf window. A dedicated off-line test system was implemented to investigate the conditions under which arcing may occur and to gain some understanding of the mechanisms leading to this phenomenon through optical spectral analysis. This paper reports on the photoemission spectra observed during the dedicated tests on a single cell 1500 MHz niobium cavity with a ceramic window operated at 10 MV/m and 2 K. The light emission was detected using a spectrometer with an intensified photodiode array. The effect of moving the window away from the beam line using a waveguide elbow is reported. 12 refs.
Date: December 31, 1995
Creator: Powers, T.; Kneisel, P. & Allen, R.
Partner: UNT Libraries Government Documents Department

Preliminary Statistical Analysis of CEBAF's Cavity Pair Assembly Process Data

Description: CEBAF has been collecting much data during the cavity pair assembly process. Some process data has been entered and analyzed during the last two years as part of our attempt to apply statistical process control methods. Analysis is presented here on mechanical tolerances achieved by the industrial fabricator of the CEBAF superconducting rf cavities (Siemens). Suggestions for tolerances obtainable in future procurements are made. Influence of cooldown conditions during vertical test on field emission onset gradient is discussed. An increase in the mean gradient of 2 MV/m was seen after a simple change in procedure.
Date: December 1, 1993
Creator: Benesch, Jay
Partner: UNT Libraries Government Documents Department

QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes

Description: In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.
Date: May 1, 2010
Creator: J.K. Sekutowicz, P. Kneisel, R. Nietubyc, T. Rao, J. Smedley
Partner: UNT Libraries Government Documents Department

Calculation of acceptance of high intensity superconducting proton linac for Project X

Description: Project-X is the proposed high intensity proton facility to be built at Fermilab, US. Its Superconducting Linac, to be used at first stage of acceleration, will be operated in continuous wave (CW) mode. The Linac is divided into three sections on the basis of operating frequencies & six sections on the basis of family of RF cavities to be used for the acceleration of beam from 2.5 MeV to 3 GeV. The transition from one section to another can limit the acceptance of the Linac if these are not matched properly. We performed a study to calculate the acceptance of the Linac in both longitudinal and transverse plane. Investigation of most sensitive area which limits longitudinal acceptance and study of influence of failure of beam line elements at critical position, on acceptance are also performed.
Date: March 1, 2011
Creator: Saini, A.; Ranjan, K.; U., /Delhi; Solyak, N.; Mishra, S.; Yakovlev, V. et al.
Partner: UNT Libraries Government Documents Department

Concept em design of the 650 MHz cavities for the Project X

Description: Concept of the 650 MHz cavities for the Project X is presented. Choice of the basic parameters, i.e., number of cells, geometrical {beta}, apertures, coupling coefficients, etc., is discussed. The cavity optimization criteria are formulated. Results of the RF design are presented for the cavities of both the low-energy and high-energy sections.
Date: March 1, 2011
Creator: Yakovlev, V.; Champion, M.; Gonin, I.; Lunin, A.; Kazakov, S.; Khabiboulline, T. et al.
Partner: UNT Libraries Government Documents Department

Progress in cavity and cryomodule design for the Project X linac

Description: The continuous wave 3 GeV Project X Linac requires the development of two families of cavities and cryomodules at 325 and 650 MHz. The baseline design calls for three types of superconducting single-spoke resonators at 325 MHz having betas of 0.11, 0.22, and 0.42 and two types of superconducting five-cell elliptical cavities having betas of 0.61 and 0.9. These cavities shall accelerate a 1 mA H- beam initially and must support eventual operation at 4 mA. The electromagnetic and mechanical designs of the cavities are in progress and acquisition of prototypes is planned. The heat load to the cryogenic system is up to 25 W per cavity in the 650 MHz section, thus segmentation of the cryogenic system is a major issue in the cryomodule design. Designs for the two families of cryomodules are underway.
Date: March 1, 2011
Creator: Champion, M.; Barbanotti, S.; Foley, M.; Ginsburg, S.; Gonin, I; Grimm, C. et al.
Partner: UNT Libraries Government Documents Department

Summary on the Fundamental Mode Damper Experiments of the 56 MHz SRF Cavity

Description: This report summarizes the experimental results done with the fundamental damper for the 56 MHz prototype Cu cavity. Various measurements were done on the cavity including determination of the position of the fundamental damper and measurement of the frequency and Q factor changes while the damper is withdrawn. Prediction on the dissipated power while the damper is withdrawn was made by experiments.
Date: July 1, 2008
Creator: Choi,E. & Hahn, H.
Partner: UNT Libraries Government Documents Department

Higher Order Mode Damper Study of the 56 MHz SRF Cavity

Description: This report summarizes the study on the higher order mode (HOM) damper for the 56 MHz SRF cavity. The Q factors and frequencies of the HOMs with the HOM damper are measured and compared to the simulation. The high pass filter prototype for rejecting the fundamental mode is designed and tested. The filter measurement is also compared to the simulation. Based on the measurement, a new location of the HOM damper is chosen.
Date: August 1, 2008
Creator: Choi,E. & Hahn, H.
Partner: UNT Libraries Government Documents Department

Capacitive Fundamental Power Coupler and Pickup for the 56 MHz SRF Cavity

Description: The beam excited 56 MHz SRF cavity will have a power coupler for a fast frequency tuner. The calculation shows the coupling of the power coupler, {beta}{sub opt}, is around 50. Size and location of the power coupler are determined by measurements. Measurements are in good agreement with the simulation results. The axial location of the power coupler for the Nb cavity is limited by corrugations made on the cavity outer conductor for purpose of removing any multipacting. The preferred axial location is 14.5 cm away from the cavity gap start where a slow tuner plate will be. MWS simulations are done to determine the length of the power coupler inner conductor and pickup probe for the Nb cavity at the fixed axial location. Size and location of both the fundamental power coupler and the pickup probe can be decided from the simulation results.
Date: July 1, 2008
Creator: Choi,E. & Hahn, H.
Partner: UNT Libraries Government Documents Department

Cathode Ion Bombardment in RF Photoguns

Description: In this paper, we use the method of rapid oscillating field to solve the equation of ion motion in an RF gun. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper proposes a simple mitigation recipe that can reduce the rate of ion bombardment.
Date: September 1, 2008
Creator: Pozdeyev,E.; Kayran, D. & Litvinenko, V.
Partner: UNT Libraries Government Documents Department

Geometric optimization of the 56 MHz SRF cavity and its frequency table

Description: It is essential to know the frequency of a Superconducting Radio Frequency (SRF) cavity at its 'just being fabricated' stage because frequency is the key parameter in constructing the cavity. In this paper, we report our work on assessing it. We can estimate the frequency change from stage to stage theoretically and/or by simulation. At the operating stage, the frequency can be calculated accurately, and, from this value, we obtain the frequencies at other stages. They are listed in a table that serves to check the processes from stage to stage. Equally important is optimizing the geometric shape of the SRF cavity so that the peak electric-field and peak magnetic-field are as low as possible. It is particularly desirable in the 56MHz SRF cavity of RHIC to maximize the frequency sensitivity of the slow tuner. After undertaking such optimization, our resultant peak electric-field is only 44.1MV/m, and the peak magnetic-field is 1049G at 2.5MV of voltage across the cavity gap. To quench superconductivity in an SRF cavity, it is reported that the limit of the peak magnetic-field is 1800G [1], and that of the peak electric-field is more than l00MV/m for a SRF cavity [2]. Our simulations employed the codes Superfish and Microwave Studio.
Date: October 1, 2008
Creator: Chang,X. & Ben-Zvi, I.
Partner: UNT Libraries Government Documents Department

Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

Description: Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.
Date: August 4, 2009
Creator: Anthony, P. L.; Delayen, J. R.; Fryberger, D.; Goree, W. S.; Mammosser, J.; Szalata, Z. M. et al.
Partner: UNT Libraries Government Documents Department

Buffer Chemical Polishing and RF Testing of the 56 MHz SRF Cavity

Description: The 56 MHz cavity presents a unique challenge in preparing it for RF testing prior to construction of the cryomodule. This challenge arises due to the physical dimensions and subsequent weight of the cavity, and is further complicated by the coaxial geometry, and the need to properly chemically etch and high pressure rinse the entire inner surface prior to RF testing. To the best of my knowledge, this is the largest all niobium SRF cavity to be chemically etched and subsequently tested in a vertical dewar at 4K, and these processes will be the topic of this technical note.
Date: January 1, 2009
Creator: Burrill,A.
Partner: UNT Libraries Government Documents Department

Wakefield calculation for superconducting TM110 cavity without azimuthal symmetry

Description: The 3.9GHz TM{sub 110} mode deflecting cavity developed at FNAL has many applications, including use as a longitudinal bunch profile diagnostic, and as a crab cavity candidate for the ILC. These applications involve beams with substantial time structure. For the 13-cell version intended for the bunch profile application, long-range wakes have been evaluated in the frequency domain and short-range wakes have been evaluated in the time domain. Higher-order interactions of the main field in the cavity with the beam have also been parameterized. Pedagogic derivations are included as appendices.
Date: August 1, 2006
Creator: Bellantoni, Leo; /Fermilab; Burt, Graeme & U., /Lancaster
Partner: UNT Libraries Government Documents Department

Status of the first batch of niobium resonator production for the New Delhi booster linac.

Description: This paper reports the status and details of the costs of construction of niobium superconducting resonant cavities for a linear accelerator, presently being built as a booster for the 15 UD tandem Pelletron accelerator at the Nuclear Science Centre, New Delhi. The linear accelerator will have three cryostat modules, each holding eight quarter-wave resonators. Construction of a batch of ten resonators for the linac started at Argonne National Laboratory in May 1997. For production, all fabrication and all electron beam welding is being done through commercial vendors. Details of construction and present status of the project are presented.
Date: March 16, 1999
Creator: Potukuchi, P. N.
Partner: UNT Libraries Government Documents Department

Recent progress on photonic band gap accelerator cavities

Description: We report on the current status of our program to apply Photonic Band Gap (PBG) concepts to produce novel high-energy, high-intensity accelerator cavities. The PBG design on which we have concentrated our initial efforts consists of a square array of metal cylinders, terminated by conducting or superconducting sheets, and surrounded by microwave absorber on the periphery of the structure. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. In previous work, we have proposed that this structure could be utilized as an accelerator cavity, with advantageous properties over conventional cavity designs. In the present work, we present further studies, including MAFIA-based numerical calculations and experimental measurements, demonstrating the feasibility of using the proposed structure in a real accelerator application.
Date: February 1997
Creator: Smith, D. R.; Li, D. & Vier, D. C.
Partner: UNT Libraries Government Documents Department

A brief history of high power RF proton linear accelerators

Description: The first mention of linear acceleration was in a paper by G. Ising in 1924 in which he postulated the acceleration of positive ions induced by spark discharges which produced electric fields in gaps between a series of {open_quotes}drift tubes{close_quotes}. Ising apparently was not able to demonstrate his concept, most likely due to the limited state of electronic devices. Ising`s work was followed by a seminal paper by R. Wideroe in 1928 in which he demonstrated the first linear accelerator. Wideroe was able to accelerate sodium or potassium ions to 50 keV of energy using drift tubes connected alternately to high frequency waves and to ground. Nuclear physics during this period was interested in accelerating protons, deuterons, electrons and alpha particles and not heavy ions like sodium or potassium. To accelerate the light ions required much higher frequencies than available at that time. So linear accelerators were not pursued heavily at that time. Research continued during the 1930s but the development of high frequency RF tubes for radar applications in World War 2 opened the potential for RF linear accelerators after the war. The Berkeley laboratory of E. 0. Lawrence under the leadership of Luis Alvarez developed a new linear proton accelerator concept that utilized drift tubes that required a full RF period to pass through as compared to the earlier concepts. This development resulted in the historic Berkeley 32 MeV proton linear accelerator which incorporated the {open_quotes}Alvarez drift tube{close_quotes} as the basic acceleration scheme using surplus 200 MHz radar components.
Date: December 31, 1996
Creator: Browne, J.C.
Partner: UNT Libraries Government Documents Department