11,332 Matching Results

Search Results

Advanced search parameters have been applied.

Deterioration in the Heating Value of Coal During Storage

Description: From Introduction: "The detailed report is presented in this bulletin, which gives full account of the tests and the analytical data covering a period of five year's storage. Data of somewhat similar experiments for shorter periods with gas coal from the Pittsburgh bed, with Pocahontas coal on the Isthmus of Panama, with Sheridan, Wyo., subbituminous coal, which used for railroad and other purposes in the West, are included."
Date: 1917
Creator: Porter, Horace C. & Ovitz, F. K.
Partner: UNT Libraries Government Documents Department

Characteristics and Technologies for Long- vs. Short-Term Energy Storage: A Study by the DOE Energy Storage Systems Program

Description: This report describes the results of a study on stationary energy storage technologies for a range of applications that were categorized according to storage duration (discharge time): long or short. The study was funded by the U.S. Department of Energy through the Energy Storage Systems Program. A wide variety of storage technologies were analyzed according to performance capabilities, cost projects, and readiness to serve these many applications, and the advantages and disadvantages of each are presented.
Date: March 1, 2001
Creator: SCHOENUNG, SUSAN M.
Partner: UNT Libraries Government Documents Department

Storage Stability of Gasoline: Development of a Stability Prediction Method and Studies of Gasoline Composition and Component Reactivity

Description: From Abstract: "The compositions of various gums and inorganic deposits are reported in terms of elemental analysis and spectroscopic examinations. The reactions of tetraethyllead with selected hydrocarbons are also reported."
Date: unknown
Creator: Schwartz, F. G.; Whisman, M. L.; Allbright, C. S. & Ward, C. C.
Partner: UNT Libraries Government Documents Department

Oil-storage Tanks and Reservoirs with a Brief Discussion of Losses of Oil in Storage and Methods of Prevention

Description: From Introduction: "The Bureau of Mines has been conducting investigations with the view of determining the types of containers best adapted to the storage of oil. These investigations have shown that tanks composed wholly of steel give the best results. Practically all such containers in use at present have wooden roofs and this type of construction is here described, although it is the belief of the writer that concrete roofs would be far more satisfactory in every way, and that the difference in cost between a concrete and a wooden roof would, as a rule, in a few year's time, be offset by a saving oil and in cost of repairs and renewals."
Date: 1918
Creator: Bowie, C. P.
Partner: UNT Libraries Government Documents Department

Management of Common Storage Houses for Apples in the Pacific Northwest

Description: "This bulletin deals with the fundamental of construction and the efficient management of common storage houses for apples under the conditions prevailing in Washington, Oregon, Idaho, and Montana." -- p. 2. Topics discussed include ventilation, insulation, fruit quality.
Date: 1917
Creator: Ramsey, H. J. & Dennis, S. J.
Partner: UNT Libraries Government Documents Department

Potato Storage and Storage Houses

Description: "Potato storage serves two purposes, the first of which is to make possible a longer marketing period for the crop, and the second, to insure the minimum amount of loss from moisture and decay. The successful storage of potatoes is dependent on a number o factors; as, for example, the quality of the tubers stored, the temperature at which they are held, the moisture content of the air, the size of the storage pile, and the exclusion of light. The proper storage temperature for potatoes is supposed to range from 34 degrees to 38 degrees Fahrenheit.... This bulletin deals with the fundamental factor of construction and management of storage houses, as well as the methods of handling the crop that govern the condition of potatoes in storage." -- p. 2
Date: 1917
Creator: Stuart, William
Partner: UNT Libraries Government Documents Department

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

Description: This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.
Date: November 1, 2005
Creator: Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles & Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)
Partner: UNT Libraries Government Documents Department

Silo Storage Preconceptual Design

Description: The National Nuclear Security Administration (NNSA) has a need to develop and field a low-cost option for the long-term storage of a variety of radiological material. The storage option’s primary requirement is to provide both environmental and physical protection of the materials. Design criteria for this effort require a low initial cost and minimum maintenance over a 50-year design life. In 1999, Argonne National Laboratory-West was tasked with developing a dry silo storage option for the BN-350 Spent Fuel in Aktau Kazakhstan. Argon’s design consisted of a carbon steel cylinder approximately 16 ft long, 18 in. outside diameter and 0.375 in. wall thickness. The carbon steel silo was protected from corrosion by a duplex coating system consisting of zinc and epoxy. Although the study indicated that the duplex coating design would provide a design life well in excess of the required 50 years, the review board was concerned because of the novelty of the design and the lack of historical use. In 2012, NNSA tasked Idaho National Laboratory (INL) with reinvestigating the silo storage concept and development of alternative corrosion protection strategies. The 2012 study, “Silo Storage Concepts, Cathodic Protection Options Study” (INL/EST-12-26627), concludes that the option which best fits the design criterion is a passive cathotic protection scheme, consisting of a carbon steel tube coated with zinc or a zinc-aluminum alloy encapsulated in either concrete or a cement grout. The hot dipped zinc coating option was considered most efficient, but the flame-sprayed option could be used if a thicker zinc coating was determined to be necessary.
Date: September 1, 2012
Creator: Austad, Stephanie L.; Bragassa, Patrick W.; Croft, Kevin M; Ferguson, David S; Gladson, Scott C; Shafer, Annette L et al.
Partner: UNT Libraries Government Documents Department

Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

Description: The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.
Date: October 13, 2008
Creator: Ghosh, Tushar K
Partner: UNT Libraries Government Documents Department

Putting more power in your pocket

Description: Representing the Northeastern Center for Chemical Energy Storage (NECCES), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of NECCEC is to identify the key atomic-scale processes which govern electrode function in rechargeable batteries, over a wide range of time and length scales, via the development and use of novel characterization and theoretical tools, and to use this information to identify and design new battery systems.
Date: July 18, 2013
Creator: Chapman, Karena
Partner: UNT Libraries Government Documents Department

Not Your Normal Power Box

Description: Representing the Center for Electrical Energy Storage (CEES), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Best Science Lesson." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEES is to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notably Li ion batteries.
Date: July 18, 2013
Creator: Okman, Oya; Baginska, Marta; Jones, Elizabeth MC; Pety, Stephen J; Lim, Tae Wook; Kaitz, Joshua A et al.
Partner: UNT Libraries Government Documents Department

2012 BATTERIES GORDON RESEARCH CONFERENCE, MARCH 4-9, 2012

Description: The Gordon Research Conference on BATTERIES was held at Four Points Sheraton / Holiday Inn Express, Ventura, California, March 4-9, 2012. The Conference was well-attended with 176 participants. Gordon Research Conferences does not permit publication of meeting proceedings.
Date: March 9, 2012
Creator: Harris, Stephen
Partner: UNT Libraries Government Documents Department

Energy Storage Opportunities Analysis Phase II Final Report: A Study for the DOE Energy Storage Systems Program

Description: This study on the opportunities for energy storage technologies determined electric utility application requirements, assessed the suitability of a variety of storage technologies to meet the requirements, and reviewed the compatibility of technologies to satisfy multiple applications in individual installations. The study is called ''Opportunities Analysis'' because it identified the most promising opportunities for the implementation of energy storage technologies in stationary applications. The study was sponsored by the U.S. DOE Energy Storage Systems Program through Sandia National Laboratories and was performed in coordination with industry experts from utilities, manufacturers, and research organizations. This Phase II report updates the Phase I analysis performed in 1994.
Date: May 1, 2002
Creator: TAYLOR, PAULA A.; MILLER, JENNIFER L. & BUTLER, PAUL C.
Partner: UNT Libraries Government Documents Department

Innovative Business Cases for Energy Storage In a Restructured Electricity Marketplace, A Study for the DOE Energy Storage Systems Program

Description: This report describes the second phase of a project entitled ''Innovative Business Cases for Energy Storage in a Restructured Electricity Marketplace''. During part one of the effort, nine ''Stretch Scenarios'' were identified. They represented innovative and potentially significant uses of electric energy storage. Based on their potential to significantly impact the overall energy marketplace, the five most compelling scenarios were identified. From these scenarios, five specific ''Storage Market Opportunities'' (SMOs) were chosen for an in-depth evaluation in this phase. The authors conclude that some combination of the Power Cost Volatility and the T&D Benefits SMOs would be the most compelling for further investigation. Specifically, a combination of benefits (energy, capacity, power quality and reliability enhancement) achievable using energy storage systems for high value T&D applications, in regions with high power cost volatility, makes storage very competitive for about 24 GW and 120 GWh during the years of 2001 and 2010.
Date: February 1, 2003
Creator: IANNUCCI, JOE; EYER, JIM & BUTLER, PAUL C.
Partner: UNT Libraries Government Documents Department

FINAL REPORT: Transformational electrode drying process

Description: This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.
Date: December 19, 2013
Creator: Claus Daniel, C. & Wixom, M. (A123 Systems, Inc.)
Partner: UNT Libraries Government Documents Department

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

Description: The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­‐based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­‐hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­‐based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­‐hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help ...
Date: October 30, 2012
Creator: Bigelow, Erik
Partner: UNT Libraries Government Documents Department

Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

Description: This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.
Date: February 1, 2010
Creator: Eyer, James M. & Corey, Garth P.
Partner: UNT Libraries Government Documents Department

Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques

Description: The emergence of portable telecommunication, computer equipment and ultimately hybrid electric vehicles has created a substantial interest in manufacturing rechargeable batteries that are less expensive, non-toxic, operate for longer time, small in size and weigh less. Li-ion batteries are taking an increasing share of the rechargeable battery market. The present commercial battery is based on a layered LiCoO{sub 2} cathode and a graphitized carbon anode. LiCoO{sub 2} is expensive but it has the advantage being easily manufactured in a reproducible manner. Other low cost layered compounds such as LiNiO{sub 2}, LiNi{sub 0.85}Co{sub 0.15}O{sub 2} or cubic spinels such as LiMn{sub 2}O{sub 4} have been considered. However, these suffer from cycle life and thermal stability problems. Recently, some battery companies have demonstrated a new concept of mixing two different types of insertion compounds to make a composite cathode, aimed at reducing cost and improving self-discharge. Reports clearly showed that this blending technique can prevent the decline in ·capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and phase transitions for these composite cathodes. Understanding the structure and structural changes of electrode materials during the electrochemical cycling is the key to develop better .lithium ion batteries. The successful commercialization of the· lithium-ion battery is mainly built on the advances in solid state chemistry of the intercalation compounds. Most of the progress in understanding the lithium ion battery materials has been obtained from x-ray diffraction studies. Up to now, most XRD studies on lithium-ion battery materials have been done ex situ. Although these ex situ XRD studies have provided important information· about the structures of battery materials, they do face three major problems. First of all, the pre-selected charge (discharge) states may not be representative for the full picture of the structural ...
Date: May 23, 2007
Creator: Yang, Xiao-Qing
Partner: UNT Libraries Government Documents Department

University of Arizona Compressed Air Energy Storage

Description: Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.
Date: December 31, 2012
Creator: Simmons, Joseph & Muralidharan, Krishna
Partner: UNT Libraries Government Documents Department

Advanced Battery Manufacturing (VA)

Description: LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations ...
Date: September 30, 2012
Creator: Stratton, Jeremy
Partner: UNT Libraries Government Documents Department