321 Matching Results

Search Results

Advanced search parameters have been applied.

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

Description: This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.
Date: March 15, 1995
Creator: Higley, B.A.
Partner: UNT Libraries Government Documents Department

THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

Description: The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing ...
Date: July 1, 2001
Creator: Berglund, Ted; Ranney, Jeffrey T.; Babb, Carol L. & Broder, Jacqueline G.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

Description: This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper for the integration of Alstom Power proprietary code INDVU was upgraded to CO V1.0.0 and was successfully integrated with an Aspen Plus flowsheet. The V21-Controller and the Fluent CO wrapper were upgraded to CO V.1.0.0, and the testing and debugging of the upgraded V21-Controller was completed. Two Aspen Plus analysis tools (sensitivity analysis and optimization) were successfully tested in an integrated simulation. Extensive testing of the integrated software was continued. A list of suggested enhancements was given to the software development team. Work on software documentation was started. Work on preparing the release version progressed: Several enhancements were made in the V21-Controller and the Fluent Configuration Wizard GUIs. Work to add persistence functionality to the V21-Controller was started. During the last quarter good progress was made in software demonstration. Demo Case 1 simulations were completed. This case, a conventional steam cycle with a CFD model representing the boiler module, was successfully demonstrated at 9 distinct load points from 33 MW to 19 MW. Much progress was made with Demo Case 2. Work on adding a CO wrapper to the HRSGSIM code was completed, and integrated simulations with the HRSGSIM code were conducted. The CFD heat exchanger model for Demo Case 2 was calibrated with HRSGSIM results. An Advisory Board meeting was held in Manchester, NH on May 6 during the Fluent Users Group Meeting. The preparation of the project final report was started.
Date: July 30, 2003
Creator: Osawe, Maxwell; Syamlal, Madhava; Thotapalli, Krishna & Zitney, Stephen
Partner: UNT Libraries Government Documents Department

Coal ash usage in environmental restoration at the Hanford site

Description: The ash stockpiled next to the 284E steam plant is mixed fly ash, bottom ash, and slag. The ash consists of (1) baghouse residue and (2) a mixture of bottom ash and slag which is washed out of the bottom of the boilers daily. In 1991, a Toxicity Characteristic Leaching Procedure (TCLP) was performed on several samples of this ash (Hazen Research 1991). This procedure is designed to determine the mobility of organic and inorganic anatytes present in liquid, solid, or multiphasic wastes (EPA 1994). The ash tested came from surge bins, conveyor samples, and bottom ash and fly ash from the boilers at 284E. Antimony, cadmium, germanium, molybdenum, silver, thallium, tungsten, and vanadium were tested for, but on all samples were below detection Limits for the testing method. Analytes present in relatively high concentrations (but less than one part per thousand) included barium, boron, chromium, fluorine, and zinc. The size of ash particles passing through a Taylor sieve series was very evenly distributed from 1 to 200m.
Date: August 1, 1994
Creator: Scanlon, P.L.; Sonnichsen, J.C. & Phillips, S.J.
Partner: UNT Libraries Government Documents Department

Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

Description: This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.
Date: April 1, 2012
Creator: Wagner, M. J.
Partner: UNT Libraries Government Documents Department

Second-Generation PFBC Systems R&D

Description: No work was performed; the two remaining Multi Annular Swirl Burner test campaigns are on hold pending selection of a new test facility (replacement for the shut down UTSI burner test facility) and identification of associated testing costs. The Second-Generation PFB Combustion Plant conceptual design prepared in 1987 is being updated to reflect the benefit of pilot plant test data and the latest advances in gas turbine technology. The updated plant is being designed to operate with 95 percent sulfur capture and a single Siemens Westinghouse (SW) 501G gas turbine. Using carbonizer and gas turbine data generated by Foster Wheeler (FW) and SW respectively, Parsons Infrastructure & Technology prepared preliminary plant heat and material balances based on carbonizer operating temperatures of 1700 and 1800 F and found the former to yield the higher plant efficiency. As a result, 1700 F has been selected as the preferred operating condition for the carbonizer. The 501G gas turbine has an air compressor discharge temperature of 811EF and an exhaust temperature of 1140 F. Both of these streams represent high sources of heat and must be cooled, the air to 600 F to be compatible with a 650 F PCFB pressure vessel design temperature and the exhaust for a 275 F stack gas temperature. Because of their relatively high temperature, they can be used for feed water heating, steam generation and/or steam superheating and reheating. As a result, the plant could have one boiler (the PCFB boiler), or as many as three boilers if their cooling is used to generate steam. If the two streams are used to heat feed water, the feed water flow must be increased to absorb this heat while staying below the boiling point, and the steam turbine output increases; this decreases both the gas turbine to steam turbine power ...
Date: April 30, 2000
Creator: Robertson, Archie
Partner: UNT Libraries Government Documents Department

Second Generation PFBC Systems R&D

Description: No work was performed; the two remaining Multi Annular Swirl Burner test campaigns are on hold pending selection of a new test facility (replacement for the shut down UTSI burner test facility) and identification of associated testing costs. The Second-Generation PFB Combustion Plant conceptual design prepared in 1987 is being updated to reflect the benefit of pilot plant test data and the latest advances in gas turbine technology. The updated plant is being designed to operate with 95 percent sulfur capture and a single Siemens Westinghouse (SW) 501G gas turbine. Using carbonizer and gas turbine data generated by Foster Wheeler (FW) and SW respectively, Parsons Infrastructure & Technology prepared preliminary plant heat and material balances based on carbonizer operating temperatures of 1700 and 1800 F; the former yielded the higher plant efficiency and has been selected for the design update. The 501G gas turbine has an air compressor discharge temperature of 811EF and an exhaust temperature of 1140 F. Both of these streams represent high sources of heat and must be cooled, the air to 600 F to be compatible with a 650 F PCFB pressure vessel design temperature and the exhaust for a 275 F stack gas temperature. Because of their relatively high temperature, they can be used for feed water heating, steam generation and/or steam superheating and reheating. As a result, the plant could have one boiler (the PCFB boiler), or as many as three boilers if their cooling is used to generate steam. Three different plant arrangements using one, two and then three boilers were considered with the three-boiler arrangement minimizing the feedwater flow/steam turbine size and maximizing the plant efficiency. After reviewing the three arrangements it was felt the operating complexity associated with a three-boiler plant did not justify the 1/2 point increase in plant efficiency ...
Date: August 31, 2000
Creator: Robertson, Archie
Partner: UNT Libraries Government Documents Department

Environmental assessment for the salvage/demolition of 200 West Area, 200 East Area, and 300 Area steam plants

Description: This environmental assessment has been prepared to assess potential environmental impacts associated with the US Department of Energy`s proposed action: the salvage/demolition of the 200 West Area, 200 East Area, and 300 Area Steam Plants and steam distribution piping. Impact information will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the proposed action is a major federal action significantly affecting the quality of the human environment. If the proposed action is determined to be major and significant, an environmental impact statement will be prepared. If the proposed action is determined not to be major and significant, a Finding of No Significant Impact (FONSI) will be issued and the action can proceed. The proposed action involves the salvage and demolition of the 200 West Area, 200 East Are, and 300 Area steam plants and their associated steam distribution piping, equipment, and ancillary facilities. Activities include the salvaging and recycling of all materials, wastes, and equipment where feasible, with waste minimization efforts utilized.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department

TOWARD MORE EFFECTIVE REGULATION

Description: This paper proposes a model relationship between the operator engaged in a hazardous activity, the regulator of that activity, and the general public. The roles and responsibilities of each entity are described in a way that allows effective communication flow. The role of the regulator is developed using the steam boiler as an example of a hazard subject to regulation; however, the model applies to any regulated activity. In this model the safety analyst has the extremely important role of communicating sometimes difficult technical information to the regulator in a way that the regulator can provide credible assurance to the general public as to the adequacy of the control of the hazardous activity. The conclusion asserts that acceptance of the model, understanding of the roles and responsibilities and definition of who communicates what information to whom will mitigate frustration on the part of each of the three entities.
Date: June 1, 2000
Creator: GRAF, J.
Partner: UNT Libraries Government Documents Department

Evaluation of Models for Solubility and Volatility of Copper Compounds Under Steam Generation Conditions

Description: The loss in efficiency of power plants with mixed metallurgy, due to transport and deposition of copper and its oxides in HP turbines, has been recognized as one of the key problems to be solved in the utility industry worldwide. Within this context, the most important problem to be addressed is the solubility and volatility of copper compounds under steam generation condition. This paper presents an evaluation of different solubility end volatility models for copper compounds, and presents a comparison between the calculated and test data.
Date: September 12, 1999
Creator: Palmer, D. & Petrov, A.
Partner: UNT Libraries Government Documents Department

Ukraine Steam Partnership

Description: The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.
Date: February 15, 2000
Creator: Singh, Gurvinder
Partner: UNT Libraries Government Documents Department

Pollution Prevention and Best Management Practices Plan for State Waste Discharge Permits ST-4508 - ST-4509 and ST-4510

Description: On December 23, 1991, the U.S. Department of Energy, Richland Operations Office (DOE-RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of Department of Ecology Consent Order No. DE 91NM- 177 (Consent Order). The Consent Order lists regulatory milestones for liquid effluent streams on the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216, State Waste Discharge Permit Program, or WAC 173-21 8, Washington Underground Injection Control Program, where applicable. Hanford Site liquid effluent streams discharging to the soil column are categorized in the Consent Order as follows: Phase I Streams; Phase II Streams; and Miscellaneous Streams. Phase I and Phase II Streams are addressed in two reports: Plan and Schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site (DOE-RL 1987), and Annual Status of the Report of the Plan and schedule to Discontinue Disposal of Contaminated Liquids into the Soil Column at the Hanford Site (WHC-EP-0196-1). There originally were 33 Phase I and Phase II Streams; however, some streams have been eliminated. Miscellaneous streams are those liquid effluent streams discharged to the ground that arc not categorized as Phase I or Phase II Streams. Source waters of miscellaneous streams originate directly from the Columbia River, from treated Columbia River water, or from groundwater and demineralized water. Miscellaneous streams result primarily from source water used in processes such as cooling, hydrotesting, and steam generation. Miscellaneous streams also occur through the use of these source waters for maintenance and construction activities such as draining, flushing, and washing. Miscellaneous streams discharging to the soil column on the Hanford Site were subject to the requirements of several milestones identified in the Consent Order (DE 91NM-177). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous ...
Date: January 1, 2000
Creator: WILLIAMS, J.F.
Partner: UNT Libraries Government Documents Department

Water issues associated with heavy oil production.

Description: Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.
Date: November 28, 2008
Creator: Veil, J. A.; Quinn, J. J. & Division, Environmental Science
Partner: UNT Libraries Government Documents Department

DSOM - Decision Support for Operations and Maintenance - Application to a USMC Base Centralized Energy System.

Description: PNNL DSOM technology coordinates efficient steam plant operation with EMCS and SCADA systems, providing generation support and automated load shedding to meet peak demand limits saving over $1M in two years.
Date: June 1, 2004
Creator: Meador, Richard J. & Hatley, Darrel D.
Partner: UNT Libraries Government Documents Department

Enhanced Hydrogen Production Integrated with CO2 Separation in a Single-Stage Reactor

Description: High purity hydrogen is commercially produced from syngas by the Water Gas Shift Reaction (WGSR) in high and low temperature shift reactors using iron oxide and copper catalysts respectively. However, the WGSR is thermodynamically limited at high temperatures towards hydrogen production necessitating excess steam addition and catalytic operation. In the calcium looping process, the equilibrium limited WGSR is driven forward by the incessant removal of CO{sub 2} by-product through the carbonation of calcium oxide. At high pressures, this process obviates the need for a catalyst and excess steam requirement, thereby removing the costs related to the procurement and deactivation of the catalyst and steam generation. Thermodynamic analysis for the combined WGS and carbonation reaction was conducted. The combined WGS and carbonation reaction was investigated at varying pressures, temperatures and S/C ratios using a bench scale reactor system. It was found that the purity of hydrogen increases with the increase in pressure and at a pressure of 300 psig, almost 100% hydrogen is produced. It was also found that at high pressures, high purity hydrogen can be produced using stoichiometric quantities of steam. On comparing the catalytic and non catalytic modes of operation in the presence of calcium oxide, it was found that there was no difference in the purity of hydrogen produced at elevated pressures. Multicyclic reaction and regeneration experiments were also conducted and it was found that the purity of hydrogen remains almost constant after a few cycles.
Date: September 30, 2008
Creator: Ramkumar, Shwetha; Iyer, Mahesh; Wong, Danny; Gupta, Himanshu; Sakadjian, Bartev & Fan, Liang-Lhih
Partner: UNT Libraries Government Documents Department

Low Cost Hydrogen Production Platform

Description: A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high ...
Date: October 16, 2009
Creator: Timothy M. Aaron, Jerome T. Jankowiak
Partner: UNT Libraries Government Documents Department

Direct contact heat exchange interfacial phenomena for liquid metal reactors : Part I - heat transfer.

Description: Experiments on direct-contact heat exchange between molten metal and water for steam production were conducted. These experiments involved the injection of water into molten lead-bismuth eutectic for heat transfer measurements in a 1-D geometry. Based on the initial results of the experiments, the effects of the water flow rate and the molten metal superheat (temperature difference between molten metal and saturated water) on the volumetric heat transfer coefficient were discussed.
Date: February 26, 2002
Creator: Cho, D.H.; Page, R.J.; Hurtault, D.; Abdulla, S.; Liu, X.; Anderson, M.H. et al.
Partner: UNT Libraries Government Documents Department

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

Description: Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and METHANE de-NOX{reg_sign} technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.
Date: January 1, 2002
Creator: Rabovitser, Joseph & Bryan, Bruce
Partner: UNT Libraries Government Documents Department

300 Area steam plant replacement, Hanford Site, Richland, Washington: Environmental assessment

Description: Steam to support process operations and facility heating is currently produced by a centralized oil-fired plant located in the 300 Area and piped to approximately 26 facilities in the 300 Area. This plant was constructed during the 1940s and, because of tis age, is not efficient, requires a relatively large operating and maintenance staff, and is not reliable. The US Department of Energy is proposing an energy conservation measure for a number of buildings in the 300 Area of the Hanford Site. This action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a fuel source for many of these units and constructing a central control building to operate and maintain the system. A new steel-sided building would be constructed in the 300 Area in a previously disturbed area at least 400 m (one-quarter mile) from the Columbia River, or an existing 300 Area building would be modified and used. This Environmental Assessment evaluates alternatives to the proposed actions. Alternatives considered are: (1) the no action alternative; (2) use of alternative fuels, such as low-sulfur diesel oil; (3) construction of a new central steam plant, piping and ancillary systems; (4) upgrade of the existing central steam plant and ancillary systems; and (5) alternative routing of the gas distribution pipeline that is a part of the proposed action. A biological survey and culture resource review and survey were also conducted.
Date: March 1, 1997
Partner: UNT Libraries Government Documents Department

Micronized coal-fired retrofit system for SO{sub x} reduction. Technical progress report No. 1, [April--June 1996]

Description: The Project proposes in install a new TCS micronized coal fired heating plant for the PHRO Greenhouse Complex in the Town of Krzeszowice, Poland (near Krakow). PHRO utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent housing cooperatives. The boilers currently burn a high-sulfur content heavy oil, called Mazute. The new micronized coal fired boiler would: (1) provide a significant portion of the heat load for PHRO, and a portion of the adjacent residential heating, (2) dramatically reduce sulfur dioxide air pollution emissions, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil. TCS, Inc. will maintain primary responsibility for Project implementation and for supply of micronization equipment. Currently, the Town of Krzeszowice is considering a district heating program that would replace some, or all, of the 40 existing small in- town heating boilers that presently burn high-sulfur content coal. Potentially the district heating system can be expanded and connected into the PHRO boiler network; so that, PHRO boilers can supply all, or a portion of, the Town`s heating demand. The new TCS micronized coal system could provide a portion of this demand.
Date: July 8, 1996
Partner: UNT Libraries Government Documents Department

Resource conservation and pollution prevention through process optimization at Sandia National Laboratories` Steam Plant

Description: The Steam Plant at Sandia National Laboratories/New Mexico (SNL/NM) supplies on average 680,000 kg/day (1.5 x 10{sup 6} lb/day) of saturated steam for space heating and laboratory processes for SNL/NM, Technical Area 1, the eastern portion of Kirtland Air Force Base, the Department of Energy`s Albuquerque Office, and the KAFB Coronado Club. The primary fuel is natural gas (740 mscf/yr); the secondary fuel in the event of a natural gas interruption is diesel fuel. Two storage tanks provide a diesel fuel reserve of 1.5 million gallons. The Steam Plant has been in continuous operation since 1949, and some of the boilers are past their design life. Each of the boilers is controlled through a central Digital Control System (DCS). The DCS design is based on the stoichiometric equation, where the O{sub 2} stack concentration and load rate are set points and the combustion air and gas flow are adjusted based on the equation. The DCS was installed and programmed in 1992, but has not been updated since. Long range studies are being conducted to determine the fate of the steam plant, but implementation of any of these options is at least 5 years in the future. Because it is a major source of air emissions, water and chemical use, and waste water at SNL/NM, the steam plant pursued immediate solutions to reduce costs and pollutant releases, while still providing uninterrupted, quality service to its customers. This paper will summarize the ongoing efforts to conserve water, and reduce air and wastewater discharges at the SNL/NM Steam Plant. These improvements were identified through a Pollution Prevention Opportunity Assessment, an Emissions Reduction Study.
Date: October 1, 1997
Creator: Evans, C. & Chavez, C.
Partner: UNT Libraries Government Documents Department

AFBC co-firing of coal and hospital waste. Quarterly report, February - April, 1996

Description: The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: steam = 20,000 lb/hr; temperature = 353 F (saturated); pressure = 125 psig; and steam quality = {approximately}98.5%. During this reporting period: structural corrections have been made to make the facility meet the required building costs; and refractory bakeout was successfully completed during April 23-25, 1996 over a 54 -hour period. Operating permits will be obtained after construction has been completed.
Date: December 31, 1996
Creator: Stuart, J.M.
Partner: UNT Libraries Government Documents Department

COOPERATIVE LAND REUSE PROGRAM

Description: The objective of this study was to determine what financial return, if any, DOE would realize if they invest solely in removal of the asbestos from these three Hanford steam plants and the associated large bore distribution piping at the site. Once the asbestos was removed the strategy was to bring in companies that specialize in salvage and material re-use and have them remove, at no cost to DOE, the plants and the associated large bore piping. The salvage companies we contacted had said that if they didn't have to remove asbestos, they may be able to realize enough value from these plants to offset their demolition and/or dismantling cost. The results were not what we expected but they do offer DOE some favorable financial alternatives to their present approach. The study concluded that there was very little salvage and/or re-use value remaining in the steam plant material that could be used to offset the demolition and/or dismantling cost. The notable exception to this is the removal of the 24 inch steam piping that runs from 200E to 200W areas (see IDM executive summary under Dismantling cost). It is estimated that the re-use value of the 24-inch piping would more than pay for the dismantling cost of this piping. On a more favorable note, it does appear as though the cost of conventional demolition can be reduced by a factor of 3 to 5 if the asbestos is removed first and the demolition is performed using competitive and commercial practices. Both estimates in this study are similar except that IDM did not include floor slab removal nor remove the same quantity of piping. This is why we are using a range of 3 to 5 as a reduction factor. The IDM estimate (using union labor) for demolition after removal of ...
Date: July 30, 1999
Partner: UNT Libraries Government Documents Department