7 Matching Results

Search Results

Advanced search parameters have been applied.

Examination of irradiated 304L stainless steel to 6061-T6 aluminum inertia welded transition joints after irradiation in a spallation neutron

Description: The Savannah River Technology Center (SRTC) designed and fabricated tritium target/blanket assemblies which were irradiated for six months at the Los Alamos Neutron Science Center (LANSCE). Cooling water was supplied to the assemblies through 1 inch diameter 304L Stainless Steel (SS) tubing. To attach the 304L SS tubing to the modules a 304L SS to 6061-T6 Aluminum (Al) inertia welded transition joint was used. These SS/Al inertia weld transition joints simulate expected transition joints in the Accelerator Production of Tritium (APT) Target/Blanket where as many as a thousand SS/Al weld transition joints will be used. Materials compatibility between the 304L SS and the 6061-T6 Al in the spallation neutron environment is a major concern as well as the corrosion associated with the cooling water flowing through the piping. The irradiated inertia weld examination will be discussed.
Date: April 28, 2000
Creator: Dunn, K.A.
Partner: UNT Libraries Government Documents Department

Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

Description: Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.
Date: February 6, 2001
Creator: Zapp, P.E.
Partner: UNT Libraries Government Documents Department

Microstructures of laser deposited 304L austenitic stainless steel

Description: Laser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructure consisting of single-phase austenite could be achieved with the thermal conditions of the LENS [Laser Engineered Net Shape] process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.
Date: May 22, 2000
Creator: BROOKS,JOHN A.; HEADLEY,THOMAS J. & ROBINO,CHARLES V.
Partner: UNT Libraries Government Documents Department

Active Waste Materials Corrosion and Decontamination Tests

Description: Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 {und M} HNO{sub 3} could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test.
Date: August 15, 2000
Creator: Danielson, MJ; Elmore, MR & Pitman, SG
Partner: UNT Libraries Government Documents Department

Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.

Description: The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature. The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.
Date: November 1, 2004
Creator: Antoun, Bonnie R.
Partner: UNT Libraries Government Documents Department

On the interface between LENS deposited stainless steel 304L repair geometry and cast or machined components.

Description: Laser Engineered Net Shaping (LENS) is being evaluated for use as a metal component repair/modification process for the NWC. An aspect of the evaluation is to better understand the characteristics of the interface between LENS deposited material and the substrate on which it is deposited. A processing and metallurgical evaluation was made on LENS processed material fabricated for component qualification tests. A process parameter evaluation was used to determine optimum build parameters and these parameters were used in the fabrication of tensile test specimens to study the characteristics of the interface between LENS deposited material and several types of substrates. Analyses of the interface included mechanical properties, microstructure, and metallurgical integrity. Test samples were determined for a variety of geometric configurations associated with interfaces between LENS deposited material and both wrought base material and previously deposited LENS material. Thirteen different interface configurations were fabricated for evaluation representing a spectrum of deposition conditions from complete part build, to hybrid substrate-LENS builds, to repair builds for damaged or re-designed housings. Good mechanical properties and full density were observed for all configurations. When tested to failure, fracture occurred by ductile microvoid coalescence. The repair and hybrid interfaces showed the same metallurgical integrity as, and had properties similar to, monolithic LENS deposits.
Date: December 1, 2004
Creator: Smugeresky, John E.; Harris, Marc F.; Griffith, Michelle Lynn; Gill, David Dennis & Robino, Charles Victor
Partner: UNT Libraries Government Documents Department