4,024 Matching Results

Search Results

Advanced search parameters have been applied.

A preliminary study of the problem of designing high-speed airplanes with satisfactory inherent damping of the dutch roll oscillation

Description: Report presenting an investigation to create a design for fighter airplanes to have better inherent stability than most current designs. The main purpose of this design change is to obtain satisfactory stability of the Dutch roll oscillation without complicated artificial stabilizing devices. Results regarding the causes of inadequate dutch roll stability, means of improving dutch roll stability, and application of experimental design results to actual airplanes are provided.
Date: October 1953
Creator: Campbell, John P. & McKinney, Marion O., Jr.
Partner: UNT Libraries Government Documents Department

A Study on the Stability of Self-concept

Description: There are two major purposes of this study. First, it will attempt to ascertain whether self-concept, as measured by a self-concept scale, will fluctuate significantly due to a recent ego inflating or deflating experience, and if so, how lasting and in what areas are the effects. Secondly, it will note whether or not the low self-concept individual is more susceptible to changes in self-concept due to these environmental changes than the high self-concept individual.
Date: January 1964
Creator: Collman, Robert Bernard
Partner: UNT Libraries

High-Speed Wind-Tunnel Investigation of the Lateral Stability Characteristics of a 0.10-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 301

Description: An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the high-speed lateral and directional stability characteristics of a 0.10-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicate that static lateral and directional stability is present throughout the Mach number range investigated although in the Mach number range from 0.75 to 0.85 there is an appreciable decrease in rolling moment due to sideslip. Calculations of the dynamic stability indicate that according to current flying-quality requirements the damping of the lateral oscillation, although probably satisfactory for the sea-level condition, may not be satisfactory for the majority of the altitude conditions investigated.
Date: July 22, 1949
Creator: Polhamus, Edward C. & King, Thomas J., Jr.
Partner: UNT Libraries Government Documents Department

Smooth-Water Landing Stability and Rough-Water Landing and Take-Off Behavior of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

Description: A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.
Date: September 8, 1949
Creator: McKann, Robert F.; Coffee, Claude W. & Arabian, Donald D.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation at Low Speed of the Rolling Stability Derivatives of a 1/9-Scale Powered Model of the Convair XFY-1 Vertically Rising Airplane, TED No. NACA DE 373

Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to determine the rolling stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this paper.
Date: May 20, 1953
Creator: Queijo, M. J.; Wolhart, Walter D. & Fletcher, H. S.
Partner: UNT Libraries Government Documents Department

The Static-Pressure Error of a Wing Airspeed Installation of the McDonnell XF-88 Airplane in Dives to Transonic Speeds

Description: Measurements were made, in dives to transonic speeds, of the static-pressure position error at a distance of one chord ahead of the McDonnell XF-88 airplane. The airplane incorporates a wing which is swept back 35 deg along the 0.22 chord line and utilizes a 65-series airfoil with a 9-percent-thick section perpendicular to the 0.25-chord line. The section in the stream direction is approximately 8-percent thick. Data up to a Mach number of about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Data at Mach numbers above about 0.97 were obtained within an airplane normal-force-coefficient range from about 0.05 to about 0.68. Results of the measurements indicate that the static-pressure error, within the accuracy of measurement, is negligible from a Mach number of 0.65 to a Mach number of about 0.97. With a further increase in Mach number, the static-pressure error increases rapidly; at the highest Mach number attained in these tests (about M = 1.038), the error increases to about 8 percent of the impact pressure. Above a Mach number of about 0.975, the recorded Mach number remains substantially constant with increasing true Mach number; the installation is of no value between a Mach number of about 0.975 and at least 1.038, as the true Mach number cannot be obtained from the recorded Mach number in this range. Previously published data have shown that at 0.96 chord ahead of the wing tip of the straight-wing X-l airplanes, a rapid rise of position error started at a Mach number of about 0.8. In the case of the XF-88 airplane, this rise of position error was delayed, presumably by the sweep of the wing, to a Mach number of about 0.97.
Date: September 23, 1949
Creator: Goodman, Harold R.
Partner: UNT Libraries Government Documents Department

Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

Description: An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
Date: March 4, 1954
Creator: Smith, Charlee C., Jr. & Lovell, Powell M., Jr.
Partner: UNT Libraries Government Documents Department

Ditching Investigation of a 1/20-Scale Model of the Boeing Stratocruiser Airplane (C-97)

Description: An investigation of a 1/20-scale dynamically similar model of the Boeing Stratocruiser airplane (C-97) was made to determine the ditching characteristics and proper technique for ditching the airplane. Scale-strength bottoms were used to determine probable damage to the fuselage and the effect of damage on behavior. The behavior of the model was determined from visual observations, motion-picture records, and time-history deceleration records. Data are presented in a table, photographs, and curves. It was concluded that the airplane should be ditched at a medium nose-high landing attitude (near 6 deg) with landing flaps full down. The airplane will probably make a smooth run of medium depth with light spray and may even trim up slightly in the water. The fuselage will probably be damaged and the lower compartment filled with water. In calm water, the maximum longitudinal deceleration will be about 4g and the landing run will be about four fuselage lengths.
Date: 1955
Creator: Fisher, Lloyd J. & Windham, John O.
Partner: UNT Libraries Government Documents Department

Supplementary Investigation in the Langley Free-Spinning Tunnel of a 1/20-Scale Model of the Douglas XF4D-1 Airplane Including Spin-Recovery Parachute Tests of the Model Loaded to Simulate the Douglas F5D-1 Airplane

Description: A supplementary investigation has been conducted in the Langley 20-foot free-spinning tunnel of a l/20-scale model of the Douglas XF4D-1 airplane to determine the effect of only neutralizing the rudder for recovery from an inverted spin, and the effect of partial aileron deflection with the spin for recovery from an erect spin. An estimation of the size parachute required for satisfactory recovery from a spin with the model ballasted to represent the Douglas F5D-1 (formerly the Douglas XF4D-2) airplane was also made. Results of the original investigation on the XF4D-1 design are presented in NACA RM SL50K30a. The results indicated that satisfactory recoveries from inverted spins of the airplane should be obtained by rudder neutralization when the longitudinal stick position is neutral or forward. Recoveries from erect spins from the normal-spin control configuration should be satisfactory by full rudder reversal with simultaneous movement of the ailerons to two-thirds with the spin. For the parachute tests with the model loaded to represent the F5D-1 airplane, the tests indicated that a 16.7-foot-diameter hemispherical-tail parachute (drag coefficient of 1.082 based on the projected area) with a towline 20.0 feet long (full- scale values) should be satisfactory for an emergency spin-recovery device during demonstration spins of the airplane.
Date: November 21, 1955
Creator: Klinar, Walter J. & Lee, Henry A.
Partner: UNT Libraries Government Documents Department

Investigation of the Low-Speed Stability and Control Characteristics of a 1/10-Scale Model of the Douglas XF4D-1 Airplane in the Langley Free-Flight Tunnel TED No. NACA DE 349

Description: An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Douglas XF4D-1 airplane has been made in the Langley free-flight tunnel. The model was flown with leading-edge slats retracted and extended over a lift-coefficient range from 0.5 to the stall. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect on the stability characteristics of freeing the controls. The longitudinal stability and control characteristics of the model were satisfactory for all conditions investigated except near the stall with slats extended, where the model had a slight nosing-up tendency. The lateral stability and control characteristics of the model were considered satisfactory for all conditions investigated except near the stall with slats retracted, where a change in sign of the static- directional-stability parameter Cn(sub beta) caused the model to be directionally divergent. The addition of an extension to the top of the vertical tail did not increase Cn(sub beta) enough to eliminate the directional divergence of the model, but a large increase in Cn(sub beta) that was obtainable by artificial means appeared to eliminate the divergence and flights near the stall could be made. Artificially increasing the stability derivative-Cn(sub r) (yawing moment due to yawing) and Cn(sub p) (yawing moment due to rolling) had little effect on the divergence for the range of these parameters investigated. Calculations indicate that the damping of the lateral oscillation of the airplane with slats retracted or extended will be satisfactory at sea level but will be only marginally satisfactory at 40,000 feet.
Date: 1951
Creator: Johnson, Joseph L.
Partner: UNT Libraries Government Documents Department

Transonic Stability and Control Investigation of a 1/80-Scale Model of the Consolidated Vultee Skate 9 Seaplane, TED No. NACA DE 345: Transonic-Bump Method

Description: An investigation of the longitudinal stability and of the all-movable horizontal tail and aileron control of a 1/80-scale reflection-plane model of the Consolidated Vultee Skate 9 seaplane has been made through a Mach number range of 0.6 to 1.16 on the transonic bump of the Langley high-speed 7- by 10-foot tunnel. At moderate lift coefficients (0.4 to 0.8) and below a Mach number of 1.0 the model was statically unstable longitudinally. The static longitudinal stability of the model at low lift coefficients increased with Mach number corresponding to a shift in aerodynamic center from 37 percent mean aerodynamic chord at a Mach number of 0.60 to 64 percent at a Mach number of 1.10. Estimates indicate that the tail deflection angle required for steady flight and for accelerated maneuvers of the Skate 9 airplane would probably not vary greatly with Mach number at sea level, but for accelerated maneuvers at altitude the tail deflection angle would probably vary erratically with Mach number. The variation of rolling-moment coefficient with aileron deflection angle was approximately linear, agreed well with theory, and held for the range of aileron deflections tested (-17.1 deg to 16.6 deg). At low lift coefficients the drag rise occurred at Mach numbers of 0.95 and 0.90 for the wing alone and the complete model, respectively. The effects of the canopy on the model were small. For the ranges investigated, angle-of-attack and Mach number changes caused no large pressure drops in the jet-engine duct.
Date: January 1, 1950
Creator: Riebe, John M. & MacLeod, Richard G.
Partner: UNT Libraries Government Documents Department

Static Longitudinal and Lateral Stability and Control Data Obtained from Tests of a 1/15-Scale Model of the Goodyear XZP5K Airship, TED No. NACA DE 211

Description: Static longitudinal and lateral stability and control data are presented of an investigation on a l/15-scale model of the Goodyear XZP5K airship over a pitch and yaw range of +/-20 deg and 0 deg to 30 deg, respectively, for various rudder and elevator deflections. Two tail configurations of different plan forms were tested and wake and boundary-layer surveys were conducted. Testing was conducted in the Langley full-scale tunnel at a Reynolds number of approximately 16.5 x 10(exp 6) based on hull length, and corresponds to a Mach number of about 0.12.
Date: January 11, 1956
Creator: Cannon, Michael D.
Partner: UNT Libraries Government Documents Department

Strain-Gage Measurements of Buffeting Loads on a Jet-Powered Bomber Airplane

Description: Buffet boundaries, buffeting-load increments for the stabilizers and elevators, and buffeting bending-moment increments for the stabilizers and wings as measured in gradual maneuvers for a jet-powered bomber airplane are presented. The buffeting-load increments were determined from strain-gage measurements at the roots or hinge supports of the various surfaces considered. The Mach numbers of the tests ranged from 0.19 to 0.78 at altitudes close to 30,000 feet. The predominant buffet frequencies were close to the natural frequencies of the structural components. The buffeting-load data, when extrapolated to low-altitude conditions, indicated loads on the elevators and stabilizers near the design limit loads. When the airplane was held in buffeting, the load increments were larger than when recovery was made immediately.
Date: March 19, 1951
Creator: Aiken, William S., Jr. & See, John A.
Partner: UNT Libraries Government Documents Department

Investigations of Tumbling Characteristics of a 1/20-Scale Model of the Northrop N-9M Airplane

Description: The tumbling characteristics of a 1/20-scale model of the Northrop N-9M airplane have been determined in the Langley 20-foot free-spinning tunnel for various configurations and loading conditions of the model. The investigation included tests to determine whether recovery from a tumble could be effected by the use of parachutes. An estimation of the forces due to acceleration acting on the pilot during a tumble was made. The tests were performed at an equivalent test altitude of 15,000 feet. The results of the model tests indicate that if the airplane is stalled with its nose up and near the vertical, or if an appreciable amount of pitching rotation is imparted to the airplane as through the action of a strong gust, the airplane will either tumble or oscillate in pitch through a range of angles of the order of +/-120 deg. The normal flying controls will probably be ineffective in preventing or in terminating the tumbling motion. The results of the model tests indicate that deflection of the landing flaps full down immediately upon the initiation of pitching rotation will tend to prevent the development of a state of tumbling equilibrium. The simultaneous opening of two-7-foot diameter parachutes having drag coefficients of 0.7, one parachute attached to the rear portion of each wing tip with a towline between 10 and 30 feet long, will provide recovery from a tumble. The accelerations acting on the pilot during a tumble will be dangerous.
Date: January 27, 1947
Creator: MacDougall, George F., Jr.
Partner: UNT Libraries Government Documents Department

Free-Spinning-Tunnel Tests of a 1/18-Scale Model of the Fairchild XNQ-1 Airplane, TED No. NACA 2398

Description: Spin tests have been performed in the Langley 20-foot free-spinning tunnel on a 1/18-scale model of the Fairchild XNQ-1 airplane. The spin and recovery characteristics of the model were determined for the normal gross-weight loading and for two variations from this loading - center of gravity moved rearward and relative mass distribution increased along the fuselage. These tests were performed for two vertical-tail plan forms. The investigation also included simulated pilot-escape tests and rudder-force tests. The recovery characteristics of the model were satisfactory for all conditions tested by full reversal of the rudder and by simultaneous neutralization of the rudder and elevator. It was indicated that if necessary to escape from the spinning airplane, the pilot should jump from the outboard side of the fuselage and as far rearward as possible. Aa determined from spin model tests, the rudder pedal force required to reverse the rudder for recovery from the spin will be light.
Date: September 30, 1946
Creator: Daughtridge, Lee T., Jr.
Partner: UNT Libraries Government Documents Department

Supplementary Investigation in the Free-Spinning Tunnel of a 1/24-Scale Model of the Grumman F9F-6 Airplane Incorporating only Flaperons for Lateral Control, TED No. NACA DE 364

Description: A supplementary investigation was conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F9F-6 airplane. The primary purpose of the investigation was to reevaluate the spin-recovery characteristics of the airplane in view of the fact that the ailerons had been eliminated from the flaperon-aileron lateral control system of the airplane. A spin-tunnel investigation on a model of the earlier version of the F9F-6 airplane had indicated that use of ailerons with the spin (stick right in a right spin) was essential to insure recovery. The results indicate that with.ailerons eliminated, it may be difficult to obtain an erect developed spin but if a fully developed spin is obtained on the airplane, recovery therefrom may be difficult or impossible. Flaperon deflection should have little effect on spins or recoveries.
Date: November 18, 1954
Creator: Klinar, Walter J. & Lee, Henry A.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation of the Static Longitudinal Stability Characteristics of a 0.15-Scale Model of the Hermes A-1E2 Missile at High Subsonic Mach Numbers

Description: The static longitudinal stability characteristics of a 0.15-scale model of the Hermes A-lE2 missile have been determined in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.98, corresponding to Reynolds numbers, based on body length, of 12.3 x 10(exp 6) to 17.1 x 10(exp 6). This paper presents results obtained with body alone and body-fins combinations at 0 degrees (one set of fins vertical and the other set horizontal) and 45 degree angle of roll. The results indicate that the addition of the fins to the body insures static longitudinal stability and provides essentially linear variations of the lift and pitching moment at small angles of attack throughout the Mach number range. The slopes of the lift and pitching-moment curves vary slightly with Mach number and show only small effects due to the angle of roll.
Date: September 11, 1952
Creator: Alford, William J., Jr.
Partner: UNT Libraries Government Documents Department

Investigation of Spinning and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultee XFY-1 Airplane in the Free-Spinning Tunnel, TED No. NACA DE 370

Description: An investigation has been conducted in the Langley 20-foot free-spinning tunnel on a l/20-scale model of the Consolidated Vultee XFY-1 airplane with a windmilling propeller simulated to determine the effects of control setting and movements upon the erect spin and recovery characteristics for a range of airplane-loading conditions. The effects on the model's spin-recovery characteristics of removing the lower vertical tail, removing the gun pods, and fixing the rudders at neutral were also investigated briefly. The investigation included determination of the size parachute required for emergency recovery from demonstration spins. The tumbling tendencies of the model were also investigated. Brief static force tests were made to determine the aerodynamic characteristics in pitch at high angles of attack. The investigation indicated that the spin and recovery characteristics of the airplane with propeller windmilling will be satisfactory for all loading conditions if recovery is attempted by full rudder reversal accompanied by simultaneous movement of the stick laterally to full with the spin (stick right in a right spin) and longitudinally to neutral. Inverted spins should be satisfactorily terminated by fully reversing the rudder followed immediately by moving the stick laterally towards the forward rudder pedal and longitudinally to neutral. Removal of the gun pods or fixing the rudders at neutral will not adversely affect the airplane's spin-recovery characteristics, but removal of the lower vertical tail will result in unsatisfactory spin-recovery characteristics. The model-test results showed that a 13.3-foot wing-tip conventional parachute (drag coefficient approximately 0.7) should be effective as an emergency spin-recovery device during demonstration spins of the airplane. It was indicated that the airplane should not tumble and that no unusual longitudinal-trim characteristics should be obtained for the center-of-gravity positions investigated.
Date: December 1, 1952
Creator: Lee, Henry A.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation at Low Speed of the Yawing Stability Derivatives of a 1/9-Scale Powered Model of the Convair XFY-1 Vertically Rising Airplane, TED No. NACA DE 373

Description: An experimental investigation has been conducted in the Langley stability tunnel at low speed to deter+nine the yawing stability derivatives of a 1/9-scale powered model of the Convair XFY-1 vertically rising airplane. Effects of thrust coefficient were investigated for the complete model and for certain components of the model. Effects of control deflections and of propeller blade angle were investigated for the complete model. Most of the tests were made through an angle-of-attack range from about -4deg to 29deg, and the thrust coefficient range was from 0 to 0.7. In order to expedite distribution of these data, no analysis of the data has been prepared for this.
Date: March 1, 1953
Creator: Queijo, M. J.; Wolhart, w. D. & Fletcher, H. S.
Partner: UNT Libraries Government Documents Department

Investigation of the effect of chordwise positioning and shape of an underwing nacelle on the high-speed aerodynamic characteristics of a 45 degree sweptback tapered-in-thickness-ratio wing of aspect ratio 6

Description: Report presenting an investigation of three different nacelles in an underwing position at the 0.46 semispan station of a 45 degree sweptback wing at three chordwise positions for a range of Mach numbers. The nacelle profiles were an ogive cylinder, an NACA 65A-series airfoil, and an NACA 0-series airfoil (reversed). Results regarding drag characteristics, lift-drag ratios, lift characteristics, pitch characteristics, and lateral center of pressure are provided.
Date: January 22, 1953
Creator: Silvers, H. Norman & King, Thomas J., Jr.
Partner: UNT Libraries Government Documents Department

Free-Spinning-Tunnel Investigation of a 1/24-Scale Model of the Grumman F9F-6 Airplane TED No. NACA DE 364

Description: An investigation of a 1/24-scale model of the Grumman F9F-6 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The erect and inverted spin and recovery characteristics of the model were determined for the normal flight loading with the model in the clean condition. The effect of loading variations was investigated briefly. Spin-recovery parachute tests were also performed. The results indicate that erect spins obtained on the airplane in the clean condition will be satisfactorily terminated for all loading conditions provided full rudder reversal is accompanied by moving the ailerons and flaperons (lateral controls) to full with the spin (stick right in a right spin). Inverted spins should be satisfactorily terminated by full reversal of the rudder alone. The model tests indicate that an 11.4-foot (laid-out-flat diameter) tail parachute (drag coefficient approximately 0.73) should be effective as an emergency spin-recovery device during demonstration spins of the airplane provided the towline is attached above the horizontal stabilizer.
Date: January 1, 1952
Creator: Klinar, Walter J. & Healy, Frederick M.
Partner: UNT Libraries Government Documents Department

Effects of Wing Leading-Edge Camber and Tip Modifications on the Aerodynamic Characteristics of a 1/20-Scale Model of the Convair F-102 Airplane at Transonic Speeds

Description: The effects of several wing leading-edge camber and deflected-tip modifications on the force and moment characteristics of a 1/20-scale model of the Convair F-102 airplane have been determined at Mach numbers from 0.60 t o 1.14 for angles of attack up to 14 deg. in the Langley 8-foot transonic tunnel. The effects of elevator deflections from 0 deg. to -10 deg. were also obtained for a configuration incorporating favorable leading- edge and tip modifications. Leading-edge modifications which had a small amount of constant-chord camber obtained by vertically adjusting the thickness distribution over the forward (3.9 percent of the mean aerodynamic chord) portion of the wing were ineffective in reducing the drag at lifting conditions at transonic speeds. Leading edges with relatively large cambers designed to support nearly elliptical span load distributions at lift coefficients of 0.15 and 0.22 near a Mach number of 1.0 produced substantial reductions in drag at most lift coefficients.
Date: November 10, 1954
Creator: Tempelmeyer, Kenneth E. & Osborne, Robert S.
Partner: UNT Libraries Government Documents Department

Hydrodynamic Qualities of a 1/10-Size Powered Dynamic Model of the XP5Y-1 Flying Boat in Smooth Water: Langley Tank Model 246, TED No. NACA DE 320

Description: The hydrodynamic characteristics of a 1/10-size powered dynamic model of the XP5Y-1 flying boat were determined in Langley tank no. 1. Stable take-offs were possible at all practicable positions of the center of gravity and flap deflections. An increase in gross load from 123.5 to 150.0 pounds (21.5 percent) had only a slight effect on the stable range for take-off. A decrease in forward acceleration from 3.0 to 1.0 feet per second per second had only a very small effect on the stable range for take-off. In general, the landings were free from skipping except at trims below 6 deg where one skip was encountered at an aft position of the center of gravity. The model porpoised during the landing runout at all positions of the center of gravity when landed at trims above 10 deg. Spray in the propellers was light at the design gross load, and was not considered excessive,at a gross load of 136.0 pounds.
Date: January 1, 1947
Creator: Woodward, David R.; Weinstein, Irving & Whitaker, Walter E., Jr.
Partner: UNT Libraries Government Documents Department