1,928 Matching Results

Search Results

Advanced search parameters have been applied.

An analysis of plutonium immobilization versus the "spent fuel" standard

Description: Safe Pu management is an important and urgent task with profound environmental, national, and international security implications. Presidential Policy Directive 13 and analyses by scientific, technical, and international policy organizations brought about a focused effort within the Department of Energy (DOE) to identify and implement long-term disposition paths for surplus Pu. The principal goal is to render surplus Pu as inaccessible and unattractive for reuse in nuclear weapons as Pu in spent reactor fuel. In the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons- Usable Fissile Materials (1997), DOE announced pursuit of two disposition technologies: (1) irradiation of Pu as MOX fuel in existing reactors and (2) immobilization of Pu into solid forms containing fission products as a radiation barrier. DOE chose an immobilization approach that includes �use of the can-in-canister option.. . for a portion of the surplus, non-pit Pu material.� In the can-in-canister approach, cans of glass or ceramic forms containing Pu are encapsulated within canisters of HLW glass. In support of the selection process, a technical evaluation of retrievability and recoverability of Pu from glass and ceramic forms by a host nation and by rogue nations or subnational groups was completed. The evaluation involved determining processes and flowsheets for Pu recovery, comparing these processes against criteria and metrics established by the Fissile Materials Disposition Program and then comparing the recovery processes against each other and against SNF processes.
Date: June 16, 1998
Creator: Gray, W. L. & McKibben, J. M.
Partner: UNT Libraries Government Documents Department

U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

Description: This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the ...
Date: December 10, 1996
Creator: Baker, S. K.
Partner: UNT Libraries Government Documents Department

Hanford`s progress toward dry interim storage of K basin`s spent fuel

Description: This paper highlights the progress made toward removing the U.S. Department of Energy`s (DOE) approximately 2, 100 metric tons of metallic spent nuclear fuel from two outdated K Basins on the banks of the Columbia River and placing it in safe, economic interim dry storage beginning in December 1997. A new way of doing business at the Hanford Site and within DOE is being used to achieve the fast-track schedule, , cost savings, and public cooperation needed for success. In February 1994, the Spent Nuclear Fuel (SNF) Project was formed to solve serious safety and environmental problems associated with corroding metallic spent fuel stored in 1950`s vintage, leak-prone, water- filled concrete basins located within 365 meters (400 yards) of the last remaining unspoiled section of the Columbia River. Working together, the integrated project team focused on quickly getting the fuel out of the basins and into safe, dry storage. The team involved the public, government, regulators, and other stakeholders and forged a common understanding. The DOE transferred authority to the field to shorten approval times, and Site contractors reengineered processes to improve efficiency. Within nine months of creating the project, a plan was recommended to the DOE. It was approved on February 14, 1995. Further refinement, during the following six months, shortened the schedule even more and reduced costs by $350 million. The SNF Project is on a fast track. The K Basins Environmental Impact Statement was completed in only 11 months for only $1.3 million. Fuel and sludge samples were obtained from both basins and were sent to the laboratory for characterization and testing. The partially constructed Canister Storage Building (CSB), selected as the fuel storage facility, was redesigned, and construction was restarted saving over $17 million and cutting a year off the project schedule. With fuel removal beginning ...
Date: May 9, 1996
Creator: Culley, G.E., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department

Radionuclide immobilization in the phases formed by corrosion of spent nuclear fuel: The long-term assessment. 1998 annual progress report

Description: 'This research program is designed to identify the long-term corrosion products of naturally occurring UO{sub 2}{sup 2+} under oxidizing conditions as an analogue for corrosion of UO2 in spent nuclear fuel. This work will identify the phases that form, the reaction path during their formation, their stability, and their ability to incorporate key radionuclides. As of May 1998, this report summarizes work that has been completed during the first seven months of a 3 year research program. During this period, a post-doctoral fellow, F. Chen, has focused his efforts on the development of a theoretical basis for predicting the Gibbs free energies and enthalpies of formation of uranium (VI) phases. This is quite important, as these uranyl phases are the important alteration products that form during the corrosion of UO{sub 2}. The thermodynamic data base for these uranyl phase is extremely limited and often contradictory.'
Date: June 1, 1998
Creator: Ewing, R.C.
Partner: UNT Libraries Government Documents Department

Materials disposition plutonium acceptance specifications for the immobilization project

Description: The Department of Energy (DOE) has declared approximately 38.2 tonnes of weapons-grade plutonium to be excess to the needs of national security, 14.3 tonnes of fuel- and reactor-grade plutonium excess to DOE needs, and anticipates an additional 7 tonnes to be declared excess to national security needs. Of this 59.5 tonnes, DOE anticipates that ~ 7.5 tonnes will be dispositioned as spent fuel at the Geologic Repository and ~ 2 tonnes will be declared below the safeguards termination limit and be discarded as TRU waste at WIPP. The remaining 50 tonnes of excess plutonium exists in many forms and locations around the country, and is under the control of several DOE Offices. The Materials Disposition Program (MD) will be receiving materials packaged by these other Programs to disposition in a manor that meets the �spent fuel standard.� For disposition by immobilization, the planned facilities will have only limited capabilities to remove impurities prior to blending the plutonium feedstocks to prepare feed for the plutonium immobilization ceramic formation process, Technical specifications are described here that allow potential feedstocks to be categorized as either acceptable for transfer into the MD Immobilization Process, or unacceptable without additional processing prior to transfer to MD. Understanding the requirements should allow cost benefit analyses to be performed to determine if a specific material should be processed sufficiently shipment to WIPP. Preliminary analyses suggest that about 45 tonnes of this material have impurity concentrations much lower than the immobilization acceptance specifications. In addition, approximately another 3 tonnes can easily be blended with the higher purity feeds to meet the immobilization specifications. Another 1 tonne or so can be processed in the immobilization plutonium conversion area to yield materials that can be blended to provide acceptable feed for immobilization. The remaining 3 tonnes must be excluded in their ...
Date: June 15, 1998
Creator: Ebbinghaus, B.; Edmunds, T. A.; Gray, L.; Riley, D. C. & Vankonynenburg, R. A.
Partner: UNT Libraries Government Documents Department

Value of burnup credit beyond actinides

Description: DOE has submitted a topical report to the NRC justifying burnup credit based only on actinide isotopes (U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241). When this topical report is approved, it will allow a great deal of the commercial spent nuclear fuel to be transported in significantly higher capacity casks. A cost savings estimate for shipping fuel in 32 assembly (burnup credit) casks as opposed to 24 assembly (non-burnup credit) casks was previously presented. Since that time, more detailed calculations have been performed using the methodology presented in the Actinide-Only Burnup Credit Topical Report. Loading curves for derated casks have been generated using actinide-only burnup credit and are presented in this paper. The estimates of cost savings due to burnup credit for shipping fuel utilizing 32, 30, 28, and 24 assembly casks where only the 24 assembly cask does not burnup credit have been created and are discussed. 4 refs., 2 figs.
Date: December 1, 1997
Creator: Lancaster, D.; Fuentes, E. & Kang, Chi
Partner: UNT Libraries Government Documents Department

System design description for sampling fuel in K basins

Description: This System Design Description provides: (1) statements of the Spent Nuclear Fuel Project`s needs for sampling of fuel in the K East and K West Basins, (2) the sampling equipment functions and requirements, (3) a general work plan and the design logic followed to develop the equipment, and (4) a summary description of the design for the sampling equipment. This report summarizes the integrated application of both the subject equipment and the canister sludge sampling system in the characterization campaigns at K Basins.
Date: September 17, 1996
Creator: Ritter, G.A., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department

Refinishing contamination floors in Spent Nuclear Fuels storage basins

Description: The floors of the K Basins at the Hanford Site are refinished to make decontamination easier if spills occur as the spent nuclear fuel (SNF) is being unloaded from the basins for shipment to dry storage. Without removing the contaminated existing coating, the basin floors are to be coated with an epoxy coating material selected on the basis of the results of field tests of several paint products. The floor refinishing activities must be reviewed by a management review board to ensure that work can be performed in a controlled manner. Major documents prepared for management board review include a report on maintaining radiation exposure as low as reasonably achievable, a waste management plan, and reports on hazard classification and unreviewed safety questions. To protect personnel working in the radiation zone, Operational Health Physics prescribed the required minimum protective methods and devices in the radiological work permit. Also, industrial hygiene safety must be analyzed to establish respirator requirements for persons working in the basins. The procedure and requirements for the refinishing work are detailed in a work package approved by all safety engineers. After the refinishing work is completed, waste materials generated from the refinishing work must be disposed of according to the waste management plan.
Date: July 11, 1997
Creator: Huang, F.F. & Moore, F.W.
Partner: UNT Libraries Government Documents Department

Analysis of K west basin canister gas

Description: Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.
Date: March 6, 1997
Creator: Trimble, D.J., Fluor Daniel Hanford
Partner: UNT Libraries Government Documents Department

Quality assurance implementation plan for spent nuclear fuel characterization

Description: A plan was prepared to implement the Quality Assurance requirements of the Office of Civilian Radioactive Waste Management RW-0333P to the Spent Nuclear Fuel Characterization activities. The plan was based on an evaluation of the current characterization activities against the RW-0333P requirements.
Date: July 10, 1997
Creator: Horhota, M.J. & Lawrence, L.A.
Partner: UNT Libraries Government Documents Department

Analysis of water from K west basin canisters (second campaign)

Description: Gas and liquid samples have been obtained from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters. The data will provide source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System subproject (Ball 1996) and the K Basins Fuel Retrieval System subproject (Waymire 1996). The barrels of ten canisters were sampled in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results for the gas and liquid samples of the first campaign have been reported (Trimble 1995a; Trimble 1995b; Trimble 1996a; Trimble 1996b). An analysis of cesium-137 (137CS ) data from the second campaign samples was reported (Trimble and Welsh 1997), and the gas sample results are documented in Trimble 1997. This report documents the results of all analytes of liquid samples from the second campaign.
Date: March 6, 1997
Creator: Trimble, D.J., Fluor Daniel Hanford
Partner: UNT Libraries Government Documents Department

Project W-443 cask/transporation project management plan

Description: This document has been prepared and is being released for Project W-443 participants to use in the performance of project activities. This PMP establishes the organizational responsibilities and baseline controls to be used to manage Spent Nuclear Fuel Subproject W-443.
Date: July 2, 1996
Creator: Byrd, L.C., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department

The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying {ampersand} hot conditioning process

Description: Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has rommitted to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. Under the current proposed accelerated schedule, retrieval of spent nuclear fuel stored in the K East and West Basins must begin by December 1997 and be completed by December 1999. A key part of this action is retrieving fuel canisters from the water-filled K Basin storage pools and transferring them into multi@ister overpacks (MCOS) that will be used to handle and process the fuel, then store it after conditioning. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOS, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building (CSB) for staging, hot conditioning, and interim storage. This presentation dekribes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.
Date: May 15, 1996
Creator: Irwin, J.J.
Partner: UNT Libraries Government Documents Department

Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

Description: This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.
Date: July 29, 1997
Creator: Watrous, R. A. & Wootan, D. W.
Partner: UNT Libraries Government Documents Department

Canister storage building hazard analysis report

Description: This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.
Date: July 1, 1997
Creator: Krahn, D.E. & Garvin, L.J.
Partner: UNT Libraries Government Documents Department

Criticality safety evaluation report for K Basin filter cartridges

Description: A criticality safety evaluation of the K Basin filter cartridge assemblies was completed to support operations without criticality alarm system. The results show that for normal operation, the cartridge assembly is far below the safety limit of K eff = 0.95.
Date: August 28, 1996
Creator: Erickson, D.G., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department