5 Matching Results

Search Results

Advanced search parameters have been applied.

Terahertz detectors for long wavelength multi-spectral imaging.

Description: The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.
Date: October 1, 2007
Creator: Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur & Grine, Albert D.
Partner: UNT Libraries Government Documents Department

Terahertz time-domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz.

Description: We conducted broadband absorption measurements of atmospheric water vapor in the ground state, X {sup 1}A{sub 1} (000), from 0.4 to 2.7 THz with a pressure broadening-limited resolution of 6.2 GHz using pulsed, terahertz time-domain spectroscopy (THz-TDS). We measured a total of seventy-two absorption lines and forty-nine lines were identified as H{sub 2}{sup 16}O resonances. All the H{sub 2}{sup 16}O lines identified were confirmed by comparing their center frequencies to experimental values available in the literature.
Date: October 1, 2005
Creator: Allman, Ronald E. & Foltynowicz, Robert J.
Partner: UNT Libraries Government Documents Department

Hypervelocity impact flash for missile-defense kill assessment and engagement analysis : experiments on Z.

Description: Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two major Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.
Date: July 1, 2005
Creator: Thornhill, Tom Finley, III; Reinhart, William Dodd; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra & Kelly, Daniel P.
Partner: UNT Libraries Government Documents Department

Exploration of new multivariate spectral calibration algorithms.

Description: A variety of multivariate calibration algorithms for quantitative spectral analyses were investigated and compared, and new algorithms were developed in the course of this Laboratory Directed Research and Development project. We were able to demonstrate the ability of the hybrid classical least squares/partial least squares (CLSIPLS) calibration algorithms to maintain calibrations in the presence of spectrometer drift and to transfer calibrations between spectrometers from the same or different manufacturers. These methods were found to be as good or better in prediction ability as the commonly used partial least squares (PLS) method. We also present the theory for an entirely new class of algorithms labeled augmented classical least squares (ACLS) methods. New factor selection methods are developed and described for the ACLS algorithms. These factor selection methods are demonstrated using near-infrared spectra collected from a system of dilute aqueous solutions. The ACLS algorithm is also shown to provide improved ease of use and better prediction ability than PLS when transferring calibrations between near-infrared calibrations from the same manufacturer. Finally, simulations incorporating either ideal or realistic errors in the spectra were used to compare the prediction abilities of the new ACLS algorithm with that of PLS. We found that in the presence of realistic errors with non-uniform spectral error variance across spectral channels or with spectral errors correlated between frequency channels, ACLS methods generally out-performed the more commonly used PLS method. These results demonstrate the need for realistic error structure in simulations when the prediction abilities of various algorithms are compared. The combination of equal or superior prediction ability and the ease of use of the ACLS algorithms make the new ACLS methods the preferred algorithms to use for multivariate spectral calibrations.
Date: March 1, 2004
Creator: Van Benthem, Mark Hilary; Haaland, David Michael; Melgaard, David Kennett; Martin, Laura Elizabeth; Wehlburg, Christine Marie; Pell, Randy J. (The Dow Chemical Company, Midland, MI) et al.
Partner: UNT Libraries Government Documents Department

Terahertz spectral signatures :measurement and detection LDRD project 86361 final report.

Description: LDRD Project 86361 provided support to upgrade the chemical and material spectral signature measurement and detection capabilities of Sandia National Laboratories using the terahertz (THz) portion of the electromagnetic spectrum, which includes frequencies between 0.1 to 10 THz. Under this project, a THz time-domain spectrometer was completed. This instrument measures sample absorption spectra coherently, obtaining both magnitude and phase of the absorption signal, and has shown an operating signal-to-noise ratio of 10{sub 4}. Additionally, various gas cells and a reflectometer were added to an existing high-resolution THz Fourier transform spectrometer, which greatly extend the functionality of this spectrometer. Finally, preliminary efforts to design an integrated THz transceiver based on a quantum cascade laser were begun.
Date: November 1, 2005
Creator: Wanke, Michael Clement; Brener, Igal & Lee, Mark
Partner: UNT Libraries Government Documents Department