1,527 Matching Results

Search Results

Advanced search parameters have been applied.

Associations between iron oxyhydroxide nanoparticle growth and metal adsorption/structural incorporation

Description: The interaction of metal ions and oxyanions with nanoscale mineral phases has not yet been extensively studied despite the increased recognition of their prevalence in natural systems as a significant component of geomedia. A combination of macroscopic uptake studies to investigate the adsorption behavior of As(V), Cu(II), Hg(II), and Zn(II) onto nanoparticulate goethite ({alpha}-FeOOH) as a function of aging time at elevated temperature (75 C) and synchrotron-based X-ray studies to track changes in both the sorption mode and the rate of nanoparticle growth reveal the effects that uptake has on particle growth. Metal(loid) species which sorb quickly to the iron oxyhydroxide particles (As(V), Cu(II)) appear to passivate the particle surface, impeding the growth of the nanoparticles with progressive aging; in contrast, species that sorb more slowly (Hg(II), Zn(II)) have considerably less impact on particle growth. Progressive changes in the speciation of these particular metals with time suggest shifts in the mode of metal uptake with time, possibly indicating structural incorporation of the metal(loid) into the nanoparticle; this is supported by the continued increase in uptake concomitant with particle growth, implying that metal species may transform from surface-sorbed species to more structurally incorporated forms. This type of incorporation would have implications for the long-term fate and mobility of metals in contaminated regions, and affect the strategy for potential remediation/modeling efforts.
Date: September 15, 2008
Creator: Kim, C.S.; Lentini, C.J. & Waychunas, G.A.
Partner: UNT Libraries Government Documents Department

Markov models and the ensemble Kalman filter for estimation of sorption rates.

Description: Non-equilibrium sorption of contaminants in ground water systems is examined from the perspective of sorption rate estimation. A previously developed Markov transition probability model for solute transport is used in conjunction with a new conditional probability-based model of the sorption and desorption rates based on breakthrough curve data. Two models for prediction of spatially varying sorption and desorption rates along a one-dimensional streamline are developed. These models are a Markov model that utilizes conditional probabilities to determine the rates and an ensemble Kalman filter (EnKF) applied to the conditional probability method. Both approaches rely on a previously developed Markov-model of mass transfer, and both models assimilate the observed concentration data into the rate estimation at each observation time. Initial values of the rates are perturbed from the true values to form ensembles of rates and the ability of both estimation approaches to recover the true rates is examined over three different sets of perturbations. The models accurately estimate the rates when the mean of the perturbations are zero, the unbiased case. For the cases containing some bias, addition of the ensemble Kalman filter is shown to improve accuracy of the rate estimation by as much as an order of magnitude.
Date: September 1, 2007
Creator: Vugrin, Eric D.; McKenna, Sean Andrew (Sandia National Laboratories, Albuquerque, NM) & Vugrin, Kay White
Partner: UNT Libraries Government Documents Department

Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

Description: This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.
Date: September 20, 2002
Creator: Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K. & Singheiser, L.
Partner: UNT Libraries Government Documents Department

Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

Description: The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge available in ...
Date: April 26, 2012
Creator: Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William et al.
Partner: UNT Libraries Government Documents Department

Engineered Natural Geosorbents for In-Situ Immobilization of DNAPLs and Heavy Metals

Description: The report summarizes work progress from 9/15/02-12/31/2003 for the project. Progresses in these five specific areas of investigation are summarized: (1) Production of engineered natural geosorbents (ENGs); (2) Characterization of the physicochemical properties of ENGs; (3) Characterization of the sorption and desorption properties of ENGs for TCE, PCE; (4) Characterization of the sorption and desorption properties of ENGs for heavy metals 4a; and (5) Characterization of the competitive sorption and desorption properties of ENGs for DNAPL and heavy metals.
Date: June 1, 2003
Creator: Weber, Walter J.
Partner: UNT Libraries Government Documents Department

Mineral Surface Processes Responsible for the Decreased Retardation or Enhanced Mobilization of {sub 137}Cs from HLW Tank Discharges

Description: Experimental research will determine how the sorption chemistry of Cs on Hanford vadose zone sediments changes after contact with solutions characteristic of high-level tank wastes (HLW). Our central hypothesis is that the high ionic-strength of tank wastes (i.e., > 5 mol/L NaNO3) will suppress all surface-exchange reactions of Cs, except those to the highly selective frayed edge sites (FES) of the micaceous fraction. We further speculate that the concentrations, ion selectivity, and structural aspects of the FES will change after contact with the harsh chemical conditions of HLW and these changes will be manifest in the macroscopic sorption behavior of Cs. We believe that migration predictions of Cs can be improved substantially if such changes are understood and quantified.
Date: June 1, 2000
Creator: Zachara, John M.; Serne, R. Jeffrey; Ellis, Paul D. & Bertsch, Paul M.
Partner: UNT Libraries Government Documents Department

Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model

Description: Article on the characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model.
Date: December 21, 2007
Creator: Sprunger, Laura M.; Proctor, Amy; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
Partner: UNT College of Arts and Sciences

Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

Description: Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we ...
Date: January 31, 2006
Creator: Katz, Lynn E.; Kinney, Kerry A.; Bowman, Robert S.; Sullivan, Enid J.; Kwon, Soondong; Darby, Elaine B. et al.
Partner: UNT Libraries Government Documents Department

Laboratory measurement of sorption in porous media

Description: A new apparatus for measuring steam adsorption-desorption isothermally on rock samples has been installed and initial runs made for rock samples from geothermal reservoirs. The amounts adsorbed measured in these experiments are the same order of magnitude as previous experiments.
Date: January 1, 1992
Creator: Harr, M. S.; Pettit, P. & Ramey, J. J., Jr.
Partner: UNT Libraries Government Documents Department

Recent International R&D Activities in the Extraction of Uranium from Seawater

Description: A literature survey has been conducted to collect information on the International R&D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrial scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R&D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.
Date: March 15, 2010
Creator: Rao, Linfeng
Partner: UNT Libraries Government Documents Department

Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel

Description: This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with iodine. This dry-air aging simulated the impact of long-term exposure to process gases during process idling. The 6-month aged sample exhibited an iodine sorption capacity of 32 mass%, which was 9 mass % lower than that for an un-aged Ag0-functionalized silica aerogel. In an attempt to understand this decrease in sorption capacity, we characterized physical properties of the aged samples with Brunauer-Emmett-Teller (BET) nitrogen adsorption, X-ray diffraction (XRD), and high resolution scanning electron microscopy (SEM). The results showed no impact of aging on the aerogel microstructure or the silver nanoparticles in the aerogel, including their spatial distribution and morphology.
Date: September 1, 2012
Creator: Matyas, Josef; Fryxell, Glen E. & Robinson, Matthew J.
Partner: UNT Libraries Government Documents Department

Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

Description: The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.
Date: June 19, 2008
Creator: Group, The Planck CTP Working; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C. et al.
Partner: UNT Libraries Government Documents Department

Potential applications of nanostructured materials in nuclear waste management.

Description: This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.
Date: September 1, 2003
Creator: Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R. et al.
Partner: UNT Libraries Government Documents Department

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite

Description: Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mössbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with such substituted-mineral phases is important for risk assessment purposes at ...
Date: March 9, 2010
Creator: Hu, Yung-Jin; Schwaiger, Luna Kestrel; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel et al.
Partner: UNT Libraries Government Documents Department

Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

Description: The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI) diffusion in silt/clay layers. Batch isotherm experiments were first used to confirm sorption isotherms under the intended test conditions ...
Date: October 12, 2006
Creator: Bai, Jing; Dong, Wenming & Ball, William P.
Partner: UNT Libraries Government Documents Department

The Aqueous Thermodynamics and Complexation Reactions of Anionic Silica and Uranium Species to High Concentration

Description: During this contract period, a number of papers were published. The papers prior to this report have been reported in earlier annual reports. This final report covers the 2005 & 2006 publications which have been published as well as the last few which have been submitted, but are still under review for acceptance for publication. The titles and Abstract of the papers are presented in Section A, and the full published papers in Section B.
Date: November 28, 2006
Creator: Choppin, Gregory R.
Partner: UNT Libraries Government Documents Department

Sub-second Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-Ray Scattering

Description: The ability of Nafion® membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In-situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four-orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Also, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical-like domains is suggested. These differences in water-uptake kinetics and morphology provide a new perspective into Schroeder’s Paradox, which dictates different water contents for vaporand liquid-equilibrated ionomers at unit activity. The findings of this work provide critical insights into the fast kinetics of water absorption of Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions.
Date: September 30, 2011
Creator: Kusoglu, Ahmet; Modestino, Miguel A.; Hexemer, Alexander; Segalman, Rachel A. & Weber, Adam Z.
Partner: UNT Libraries Government Documents Department

Chemical Speciation of Sr, Am and Cm in high Level Waste: predictive modeling of phase partitioning during tank processing

Description: During this contract period, a number of papers were published. The papers prior to this report have been reported in earlier annual reports. This final report covers the 2005 & 2006 publications which have been published as well as the last few which have been submitted, but are still under review for acceptance for publication. The titles and abstracts of the papers are presented in section A, and the full published papers in Section B.
Date: December 20, 2006
Creator: Choppin, Gregory R.
Partner: UNT Libraries Government Documents Department