11 Matching Results

Search Results

Advanced search parameters have been applied.

Modulation of ³H-Myo-Inositol Uptake by Glucose and Sorbitol in Cultured Bovine Lens Epithelial Cells

Description: Myo-[3H]-inositol accumulation in cultured bovine lens epithelial cells (BLECs) occurred by both high- and low affinity, Nat-dependent transport sites. High ambient glucose significantly inhibited myo-[ 3 H]-inositol uptake; the co-administration of sorbinil, an aldose reductase inhibitor, prevented the inhibitory effect on the low affinity transport site. A glucose-sensitive process for myo-[3 H]-inositol uptake on the high-affinity transport site was uncovered by Lineweaver-Burk analysis. Dixon plot analysis confirmed that the effect of glucose was due to competitive inhibition of the high-affinity myo-inositol transport site while the effect of sorbitol was due to competitive inhibition of the low-affinity myo-inositol transport site.
Date: August 1992
Creator: Chen, Hai-Qing
Partner: UNT Libraries

Hydrogen Generation from Biomass-Derived Surgar Alcohols via the Aqueous-Phase Carbohydrate Reforming (ACR) Process

Description: This project involved the investigation and development of catalysts and reactor systems that will be cost-effective to generate hydrogen from potential sorbitol streams. The intention was to identify the required catalysts and reactors systems as well as the design, construction, and operation of a 300 grams per hour hydrogen system. Virent was able to accomplish this objective with a system that generates 2.2 kgs an hour of gas containing both hydrogen and alkanes that relied directly on the work performed under this grant. This system, funded in part by the local Madison utility, Madison, Gas & Electric (MGE), is described further in the report. The design and development of this system should provide the necessary scale-up information for the generation of hydrogen from corn-derived sorbitol.
Date: June 30, 2006
Creator: Cortright, Randy
Partner: UNT Libraries Government Documents Department

High Activity catalysts for Polyols Production From C-6 Sugars

Description: Over the course of this project, many significant discoveries have been made in the process for the conversion of sorbitol to value added products. The object was developing a process for the production of propylene glycol (PG), ethylene glycol (EG), and glycerol from sorbitol.
Date: May 6, 2003
Creator: Werpy, Todd; Zacher, Alan; Frye, John; Peterson, Keith; Neuenschwander, Gary; Alderson, Eric et al.
Partner: UNT Libraries Government Documents Department

New Continuous Isosorbide Production from Sorbitol: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

Description: Isosorbide is a new polymer additive derived from corn (via sorbitol) that when copolymerized with polyethylene terephthalate (PET), increases the strength and rigidity of the plastic. This project will develop an economically-viable, continuous catalytic process to convert sorbitol to isosorbide.
Date: September 12, 2001
Creator: Carde, T.
Partner: UNT Libraries Government Documents Department

Commentary on “Experimental Measurements and Equilibrium Study of Functional D-Sorbitol in Good and Anti-Solvent Binary Mixtures”

Description: This article provides a commentary on the published equation coefficients for mathematically describing the solubility behavior of D-sorbitol in binary acetonitrile + ethanol solvent mixtures using the modified Apelblat, Combined Nearly Ideal Binary Solvent/Redlich-Kister (CNIBS/R-K) and Jouyban-Acree models.
Date: May 11, 2017
Creator: Acree, William E. (William Eugene)
Partner: UNT College of Arts and Sciences

[News Script: News brief - Ice cream]

Description: Script from the WBAP-TV station in Fort Worth, Texas, covering a news story about a company in Fort Worth selling diabetic ice cream sweetened with sorbitol.
Date: January 26, 1954
Creator: WBAP-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas

Description: This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, the report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.
Date: November 1, 2004
Creator: Werpy, Todd A.; Holladay, John E. & White, James F.
Partner: UNT Libraries Government Documents Department

Final Project Report Project 10749-4.2.2.1 2007-2009

Description: This is the final report for the DOE Project 10749-4.2.2.1 for the FY2007 - FY2009 period. This report is non-proprietary, and will be submitted to DOE as a final project report. The report covers activities under the DOE Project inside CRADA 269 (Project 53231) as well as project activites outside of that CRADA (Project 56662). This is the final report that is summarized from the non-proprietary quarterlies submitted to DOE over the past 2.5 years, which in turn are summaries from the proprietary technical reporting to UOP.
Date: May 11, 2009
Creator: Zacher, Alan H.; Holladay, Johnathan E.; Frye, J. G.; Brown, Heather M.; Santosa, Daniel M. & Oberg, Aaron A.
Partner: UNT Libraries Government Documents Department

Continuous Isosorbide Production From Sorbitol Using Solid Acid Catalysis

Description: This is a final report for a project funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board was the principal contracting entity for the grant. The Iowa Corn Promotion Board subcontracted with General Electric, Pacific Northwest National Lab and New Jersey Institute of Technology to conduct research in this project. The Iowa Corn Promotion Board and General Electric provided cost share for the project. The purpose of this diverse collaboration was to integrate both the conversion and the polymer applications into one project and increase the likelihood of success. This project has led to additional collaborations among other polymer companies. The goals of the project were to develop a renewable route to isosorbide for commercialization that is economically competitive with all existing production technologies and to develop new applications for isosorbide in various products such as polymers and materials. Under this program a novel process for the production of isosorbide was developed and evaluated. The novel process converts corn based sorbitol into isosorbide using a solid catalyst with integrated water removal and product recovery. In addition the work under this program has identified several novel products based on isosorbide chemistries. These market applications include: epoxy resins, UV stabilizers, plasticizers and polyesters. These market applications have commercial interest within the current polymer industry. This report contains an overview summary of the accomplishments. Six inventions and four patent applications have been written as a result of this project. Additional data will be published in the patent applications. The data developed at New Jersey Institute of Technology was presented at two technical conferences held in June of 2006. Several companies have made inquiries about using this material in their products.
Date: September 29, 2006
Creator: Williamson, R.; Holladay,J.; Jaffe, M. & Brunelle, D.
Partner: UNT Libraries Government Documents Department

Separation of compounds with multiple -OH groups from dilute aqueous solutions via complexation with organoboronate. [1,2-propanediol]

Description: The complexing extractant agent investigated in this work is 3-nitrophenylboronic acid (NPBA) in its anionic form (NPB). NPBA and Aliquat 336 (quaternary amine) is dissolved in 2-ethyl-l-hexanol, and the extractant is contacted with aq. NaOH. Solutes investigated were 1,2-propanediol, glycerol, fructose, sorbitol and lactic acid. Batch extraction experiments were performed at 25{degree}C. Partition coefficients, distribution ratios and loadings are reported for varying concentrations of solute and NPB. All solutes complexed with NPB{sup {minus}}, with all complexes containing only one NPB{sup {minus}} per complex. The 1:1 complexation constants for the solutes glycerol, fructose and sorbitol follow trends similar to complexation with B(OH){sub 4}{sup {minus}} (aq.), i.e. the complexation constants increase with increasing number of {minus}OH groups available for complexation. Assumption of 1:1 complex is not valid for 1, 2-propanediol, which showed overloading (more than one mole of solute complexed to one mole NPB{sup {minus}}) at higher concentrations. The {minus}OH group on the NPB{sup {minus}} which is left uncomplexed after one solute molecule had bound to the other two {minus}OH groups may be responsible for the overloading. Overloading is also observed in extraction of tactic acid, but through a different mechanism. It was found that TOMA{sup +} can extract lactic acid to an extent comparable to the uptake of lactic acid by NPB{sup {minus}}. The complexation is probably through formation of an acid-base ion pair. Losses of NPBA into the aqueous phase could lead to problems, poor economics in industrial separation processes. One way of overcoming this problem would be to incorporate the NPBA onto a solid support.
Date: May 1, 1992
Creator: Chow, Tina Kuo Fung.
Partner: UNT Libraries Government Documents Department