294 Matching Results

Search Results

Advanced search parameters have been applied.

Effect of SOFC Interconnect-Coating Interactions on Coating Properties and Performance

Description: The high operating temperature of solid oxide fuel cells (SOFCs) provides good fuel flexibility which expands potential applications, but also creates materials challenges. One such challenge is the interconnect material, which was the focus of this project. In particular, the objective of the project was to understand the interaction between the interconnect alloy and ceramic coatings which are needed to minimize chromium volatilization and the associated chromium poisoning of the SOFC cathode. This project focused on coatings based on manganese cobalt oxide spinel phases (Mn,Co)3O4, which have been shown to be effective as coatings for ferritic stainless steel alloys. Analysis of diffusion couples was used to develop a model to describe the interaction between (Mn,Co)3O4 and Cr2O3 in which a two-layer reaction zone is formed. Both layers form the spinel structure, but the concentration gradients at the interface appear like a two-phase boundary suggesting that a miscibility gap is present in the spinel solid solution. A high-chromium spinel layer forms in contact with Cr2O3 and grows by diffusion of manganese and cobalt from the coating material to the Cr2O3. The effect of coating composition, including the addition of dopants, was evaluated and indicated that the reaction rate could be decreased with additions of iron, titanium, nickel and copper. Diffusion couples using stainless steel alloys (which form a chromia scale) had some similarities and some differences as compared to those with Cr2O3. The most notable difference was that the high-chromium spinel layer did not form in the diffusion couples with stainless steel alloys. This difference can be explained using the reaction model developed in this project. In particular, the chromia scale grows at the expense of the alloy, the high-chromia layer grows at the expense of chromia scale and the high-chromia layer is consumed by diffusion of chromium into the coating ...
Date: September 5, 2012
Creator: Fergus, Jeffrey W.
Partner: UNT Libraries Government Documents Department

Filled glass composites for sealing of solid oxide fuel cells.

Description: Glasses filled with ceramic or metallic powders have been developed for use as seals for solid oxide fuel cells (SOFC's) as part of the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Program. The composites of glass (alkaline earth-alumina-borate) and powders ({approx}20 vol% of yttria-stabilized zirconia or silver) were shown to form seals with SOFC materials at or below 900 C. The type and amount of powder were adjusted to optimize thermal expansion to match the SOFC materials and viscosity. Wetting studies indicated good wetting was achieved on the micro-scale and reaction studies indicated that the degree of reaction between the filled glasses and SOFC materials, including spinel-coated 441 stainless steel, at 750 C is acceptable. A test rig was developed for measuring strengths of seals cycled between room temperature and typical SOFC operating temperatures. Our measurements showed that many of the 410 SS to 410 SS seals, made using silver-filled glass composites, were hermetic at 0.2 MPa (2 atm.) of pressure and that seals that leaked could be resealed by briefly heating them to 900 C. Seal strength measurements at elevated temperature (up to 950 C), measured using a second apparatus that we developed, indicated that seals maintained 0.02 MPa (0.2 atm.) overpressures for 30 min at 750 C with no leakage. Finally, the volatility of the borate component of sealing glasses under SOFC operational conditions was studied using weight loss measurements and found by extrapolation to be less than 5% for the projected SOFC lifetime.
Date: April 1, 2009
Creator: Tandon, Rajan; Widgeon, Scarlett Joyce; Garino, Terry J.; Brochu, Mathieu; Gauntt, Bryan D.; Corral, Erica L. et al.
Partner: UNT Libraries Government Documents Department

Welding of dissimilar alloys for high temperature heat exchangers for SOFC

Description: Reduction in the cost of balance of plant applications is one of the top priority focus areas for the successful implementation of solid oxide fuel cell technology. High temperature heat exchangers are employed to heat cathode air utilizing either hot gases coming from the anode side of the stack or other hot gases generated by external processes. In order to reduce the cost of heat exchangers, it may be necessary to apply several different materials, each in a different temperature zone, for the construction of the heat exchanger. This technique would require the joining of dissimilar materials in the construction. In this work, welding of commercial candidate dissimilar materials is explored. Filler materials were identified using equilibrium phase diagrams and thermodynamic simulation software. Autogenous welding was performed and the welding defects were characterized. Finally, experimental weld microstructures were compared to phases predicted by the simulations.
Date: October 1, 2006
Creator: Wilson, R.D.; Hatem, J.; Dogan, O.N. & King, P.E.
Partner: UNT Libraries Government Documents Department

Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

Description: Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.
Date: November 20, 2006
Creator: Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J. & De Jonghe, Lutgard C.
Partner: UNT Libraries Government Documents Department

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory

Description: The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.
Date: November 1, 2009
Creator: Stoots, Carl; O'Brien, James; Herring, Stephen; Condie, Keith; Moore-McAteer, Lisa; Hartvigsen, Joseph J. et al.
Partner: UNT Libraries Government Documents Department

High Temperature Solid Oxide Fuel Cell Generator Development

Description: This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.
Date: September 30, 2007
Creator: Pierre, Joseph
Partner: UNT Libraries Government Documents Department

High Temperature Solid Oxide Fuel Cell Generator Development

Description: Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.
Date: August 21, 2006
Creator: Pierre, Joseph F.
Partner: UNT Libraries Government Documents Department

An Integrated Approach to Modeling and Mitigating SOFC Failure

Description: The specific objectives of this project were: (1) To develop and demonstrate the feasibility of an integrated predictive computer-based tool for fuel cell design and reliability/durability analysis, (2) To generate new scientific and engineering knowledge to better enable SECA Industry Teams to develop reliable, low-cost solid-oxide fuel cell power generation systems, (3) To create technology breakthroughs to address technical risks and barriers that currently limit achievement of the SECA performance and cost goals for solidoxide fuel cell systems, and (4) To transfer new science and technology developed in the project to the SECA Industry Teams. Through this three-year project, the Georgia Tech's team has demonstrated the feasibility of the solution proposed and the merits of the scientific path of inquiry, and has developed the technology to a sufficient level such that it can be utilized by the SECA Industry Teams. This report summarizes the project's results and achievements.
Date: May 15, 2006
Creator: Qu, Jianmin; Fedorov, Andrei & Haynes, Comas
Partner: UNT Libraries Government Documents Department

An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

Description: Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.
Date: December 31, 2005
Creator: Mazumder, Sudip K.
Partner: UNT Libraries Government Documents Department

Resilient Sealing Materials for Solid Oxide Fuel Cells

Description: This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.
Date: September 30, 2006
Creator: Reis, Signo T. & Brow, Richard K.
Partner: UNT Libraries Government Documents Department

Solid oxide fuel cell with multi-unit construction and prismatic design

Description: A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell . The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.
Date: December 1, 1997
Creator: McPheeters, Charles C.; Dees, Dennis W. & Myles, Kevin M.
Partner: UNT Libraries Government Documents Department

Nondestructive Characterization Methods for Monolithic Solid Oxide Fuel Cells

Description: Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a "complete" cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. The purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.
Date: January 1993
Creator: Ellingson, W. A.
Partner: UNT Libraries Government Documents Department

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

Description: A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.
Date: April 30, 2003
Creator: Huang, Keqin
Partner: UNT Libraries Government Documents Department

MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL

Description: AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.
Date: February 15, 2004
Creator: Pal, Uday B. & Gopalan, Srikanth
Partner: UNT Libraries Government Documents Department

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS

Description: A thorough literature survey on low-temperature electrolyte and electrode materials for solid oxide fuel cells (SOFC) is presented. Preliminary results of co-sintering LaGaO{sub 3} (LSGM) film on the cathode substrate were also reported. The chemical stability of LSGM in various SOFC environments was thermodynamically assessed and verified by the molten-salt technique.
Date: April 30, 2001
Creator: Huang, Keqin
Partner: UNT Libraries Government Documents Department

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

Description: This document summarizes the technical progress from September 2002 to March 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. The causes have been identified for the unstable open circuit voltage (OCV) and low performance exhibited by the anode-supported lanthanum gallate based cells from the earlier development. Promising results have been obtained in the area of synthesis of electrolyte and cathode powders, which showed excellent sintering and densification at low temperatures. The fabrication of cells using tapecalendering process for anode-supported thin lanthanum gallate electrolyte cells and their performance optimization is in progress.
Date: April 1, 2003
Creator: Guan, Jie; Verma, Atul & Minh, Nguyen
Partner: UNT Libraries Government Documents Department

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

Description: This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.
Date: March 31, 2003
Creator: Anderson, Harlan U.; Dogan, Fatih & Petrovsky, Vladimir
Partner: UNT Libraries Government Documents Department

MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS

Description: This document summarizes the technical progress from April to September 2003 for the program, Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells, contract number DE-AC26-00NT40711. Characteristics of doped lanthanum gallate (LSGMF) powder suitable for thin electrolyte fabrication have been defined. Bilayers with thin LSGMF electrolyte supported on an anode were fabricated and the fabrication process was improved. Preliminary performance was characterized. High performance cathode material Sr{sub 0.5}Sm{sub 0.5}CoO{sub 3} has been down-selected and is being optimized by modifying materials characteristics and processing parameters. The selected cathode exhibited excellent performance with cathode polarization of {approx}0.23 ohm-cm{sup 2} at 600 C.
Date: October 1, 2003
Creator: Guan, Jie & Minh, Nguyen
Partner: UNT Libraries Government Documents Department