281 Matching Results

Search Results

Advanced search parameters have been applied.

ALMA Observations Show Major Mergers Among the Host Galaxies of Fast-growing, High-redshift, Supermassive Black Holes

Description: This article presents new ALMA band-7 data for a sample of six luminous quasars at z ≃ 4.8, powered by fast-growing supermassive black holes (SMBHs) with rather uniform properties.
Date: February 3, 2017
Creator: Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto & Shemmer, Ohad
Partner: UNT College of Arts and Sciences

Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

Description: We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by coadding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [O III] luminosity, emission line ratios, and the strength of the 4000{angstrom} break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the {approx} 10{sup 28} ergs s{sup -1} Hz{sup -1} level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000{angstrom} break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [O III] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion {sigma} of the host galaxy. For systems at similar redshifts and values of {sigma}, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.
Date: April 18, 2007
Creator: de Vries, W H; Hodge, J A; Becker, R H; White, R L & Helfand, D J
Partner: UNT Libraries Government Documents Department

Radio AGN in 13,240 galaxy clusters from the Sloan Digital Sky Survey

Description: We correlate the positions of 13,240 Brightest Cluster Galaxies (BCGs) with 0.1 {le} z {le} 0.3 from the maxBCG catalog with radio sources from the FIRST survey to study the sizes and distributions of radio AGN in galaxy clusters. We find that 19.7% of our BCGs are radio-loud, and this fraction depends on the stellar mass of the BCG, and to a lesser extent on the richness of the parent cluster (in the sense of increasing radio loudness with increasing mass). The intrinsic size of the radio emission associated with the BCGs peaks at 55 kpc, with a tail extending to 200 kpc. The radio power of the extended sources places them on the divide between FR I and FR II type sources, while sources compact in the radio tend to be somewhat less radio-luminous. We also detect an excess of radio sources associated with the cluster, instead of with the BCG itself, extending out to {approx} 1.4 kpc.
Date: May 30, 2007
Creator: Croft, S; de Vries, W & Becker, R
Partner: UNT Libraries Government Documents Department

THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. II. STATISTICAL LENS SAMPLE FROM THETHIRD DATA RELEASE

Description: We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 ({approx}4188 deg{sup 2}), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1-inch and 20-inch and flux ratios of faint to bright lensed images larger than 10{sup -0.5}. We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations ({approx} 1-inch - 2-inch) and one is a large separation (15-inch) system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample.
Date: September 13, 2007
Creator: Inada, N; Oguri, M; Becker, R H; Shin, M; Richards, G T; Hennawi, J F et al.
Partner: UNT Libraries Government Documents Department

Cloud classification using whole-sky imager data

Description: Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes, thereby providing the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here utilizes binary decision trees to distinguish the different cloud types based on cloud feature vectors.
Date: February 1, 1995
Creator: Buch, K.A. Jr. & Sun, Chen-Hui
Partner: UNT Libraries Government Documents Department

Wide-field surveys from the SNAP mission

Description: The Supernova/Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/NIR imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. Two 7.5 square-degree fields will be observed every four days over 16 months to a magnitude depth of AB = 27.7 in each of nine filters. Co-adding images over all epochs will give an AB = 30.3 per filter. A 300 square-degree field will be surveyed with no repeat visits to AB = 28 per filter. The nine filters span 3500-17000 {angstrom}. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data supports a broad range of auxiliary science programs.
Date: July 23, 2002
Creator: agkim@lbl.gov
Partner: UNT Libraries Government Documents Department

Total Sky Imager (TSI) Handbook

Description: The total sky imager (TSI) provides time series of hemispheric sky images during daylight hours and retrievals of fractional sky cover for periods when the solar elevation is greater than 10 degrees.
Date: June 1, 2005
Creator: Morris, VR
Partner: UNT Libraries Government Documents Department

The FIRST-2MASS Red Quasar Survey

Description: Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.
Date: June 28, 2007
Creator: Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D & Lacy, M
Partner: UNT Libraries Government Documents Department

FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR

Description: We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.
Date: May 14, 2009
Creator: Collaboration, IceCube & Klein, Spencer
Partner: UNT Libraries Government Documents Department

Making Maps from Planck LFI 30GHz Data with Asymmetric Beams and Cooler Noise

Description: The Planck satellite will observe the full sky at nine frequencies from 30 to 857 GHz. Temperature and polarization frequency maps made from these observations are prime deliverables of the Planck mission. The goal of this paper is to examine the effects of four realistic instrument systematics in the 30 GHz frequency maps: non-axially-symmetric beams, sample integration, sorption cooler noise, and pointing errors. They simulated one year long observations of four 30 GHz detectors. The simulated timestreams contained CMB, foreground component (both galactic and extra-galactic), instrument nolise (correlated and white), and the four instrument systematic effects. They made maps from the timelines and examined the magnitudes of the systematics effects in the maps and their angular power spectra. They also compared the maps of different mapmaking codes to see how they performed. They used five mapmaking codes (two destripers and three optimal codes). None of their mapmaking codes makes an attempt to deconvolve the beam from its output map. Therefore all our maps had similar smoothing due to beams and sample integration. This is a complicated smoothing, because every map pixel has its own effective beam. Temperature to polarization cross-coupling due to beam mismatch causes a detectable bias in the TE spectrum of the CMB map. The effects of cooler noise and pointing errors did not appear to be major concerns for the 30 GHz channel. The only essential difference found so far between mapmaking codes that affects accuracy (in terms of residual RMS) is baseline length. All optimal codes give essentially indistiguishable results. A destriper gives the same result as the optimal codes when the baseline is set short enough (Madam). For longer baselines destripers (Springtide and Madam) require less computing resources but deliver a noisier map.
Date: June 19, 2008
Creator: Group, The Planck CTP Working; Ashdown, M.A.J.; Baccigalupi, C.; Bartlett, J.G.; Borrill, J.; Cantalupo, C. et al.
Partner: UNT Libraries Government Documents Department

The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

Description: We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.
Date: August 19, 2011
Creator: Abdo, A. A.
Partner: UNT Libraries Government Documents Department

Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II

Description: We present a search for point sources of high energy neutrinos using 3.8 years of data recorded by AMANDA-II during 2000-2006. After reconstructing muon tracks and applying selection criteria designed to optimally retain neutrino-induced events originating in the Northern Sky, we arrive at a sample of 6595 candidate events, predominantly from atmospheric neutrinos with primary energy 100 GeV to 8 TeV. Our search of this sample reveals no indications of a neutrino point source. We place the most stringent limits to date on E{sup -2} neutrino fluxes from points in the Northern Sky, with an average upper limit of E{sup 2}{Phi}{sub {nu}{sub {mu}}+{nu}{sub {tau}}} {le} 5.2 x 10{sup -11} TeV cm{sup -2} s{sup -1} on the sum of {nu}{sub {mu}} and {nu}{sub {tau}} fluxes, assumed equal, over the energy range from 1.9 TeV to 2.5 PeV.
Date: March 6, 2009
Creator: Collaboration, IceCube & Klein, Spencer
Partner: UNT Libraries Government Documents Department

Extending the search for neutrino point sources with IceCube above the horizon

Description: Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmospheric background is observed in a sky scan and in tests of source candidates. Upper limits are reported, which for the first time cover point sources in the southern sky up to EeV energies.
Date: November 20, 2009
Creator: Collaboration, IceCube
Partner: UNT Libraries Government Documents Department

MEASUREMENT OF THE ANISOTROPY OF COSMIC RAY ARRIVAL DIRECTIONS WITH ICECUBE

Description: We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi TeV region in the Southern sky using data from the IceCube detector. Between June 2007 and March 2008, the partially-deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 meters inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Southern sky. The data include 4.3 billion muons produced by downgoing cosmic ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3 degrees and a median energy of ~;; 20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first harmonic amplitude of (6.4 +- 0.2 stat. +- 0.8 syst.) x 10-4.
Date: May 17, 2010
Creator: Collaboration, IceCube & Abbasi, R.
Partner: UNT Libraries Government Documents Department

The Sloan Digital Sky Survey: Status and prospects

Description: The Sloan Digital Sky Survey (SDSS) is a project to definitively map {pi} steradians of the local Universe. An array of CCD detectors used in drift-scan mode will digitally image the sky in five passbands to a limiting magnitude of r{prime} {approximately} 23. Selected from the imaging survey, 10{sup 6} galaxies and 10{sup 5} quasars will be observed spectroscopically. I describe the current status of the survey, which is due to begin observations early in 1997, and its prospects for constraining models for dark matter in the Universe. 8 refs., 7 figs.
Date: May 1, 1996
Creator: Loveday, J. & Collaboration, SDSS
Partner: UNT Libraries Government Documents Department

The SDSS data archive server

Description: The Sloan Digital Sky Survey (SDSS) Data Archive Server (DAS) provides public access to data files produced by the SDSS data reduction pipeline. This article discusses challenges in public distribution of data of this volume and complexity, and how the project addressed them. The Sloan Digital Sky Survey (SDSS)1 is an astronomical survey of covering roughly one quarter of the night sky. It contains images of this area, a catalog of almost 300 million objects detected in those images, and spectra of more than a million of these objects. The catalog of objects includes a variety of data on each object. These data include not only basic information but also fit parameters for a variety of models, classifications by sophisticated object classification algorithms, statistical parameters, and more. If the survey contains the spectrum of an object, the catalog includes a variety of other parameters derived from its spectrum. Data processing and catalog generation, described more completely in the SDSS Early Data Release2 paper, consists of several stages: collection of imaging data, processing of imaging data, selection of spectroscopic targets from catalogs generated from the imaging data, collection of spectroscopic data, processing of spectroscopic data, and loading of processed data into a database. Each of these stages is itself a complex process. For example, the software that processes the imaging data determines and removes some instrumental signatures in the raw images to create 'corrected frames', models the point spread function, models and removes the sky background, detects objects, measures object positions, measures the radial profile and other morphological parameters for each object, measures the brightness of each object using a variety of methods, classifies the objects, calibrates the brightness measurements against survey standards, and produces a variety of quality assurance plots and diagnostic tables. The complexity of the spectroscopic data reduction ...
Date: October 1, 2007
Creator: Neilsen, Eric H., Jr.
Partner: UNT Libraries Government Documents Department

New and Improved Data Logging and Collection System for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western Pacific, and North Slope of Alaska Sky Radiation, Ground Radiation, and MET Systems

Description: Aging systems and technological advances mandated changes to the data collection systems at the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) and North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) sites. Key reasons for the upgrade include the following: achieve consistency across all ACRF sites for easy data use and operational maintenance; minimize the need for a single mentor requiring specialized knowledge and training; provide local access to real-time data for operational support, intensive operational period (IOP) support, and public relations; eliminate problems with physical packaging (condensation, connectors, etc.); and increase flexibility in programming and control of the data logger.
Date: March 18, 2005
Creator: Ritsche, M. T.; Holdridge, D. J. & Pearson, R.
Partner: UNT Libraries Government Documents Department

Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

Description: This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.
Date: December 1, 2013
Creator: Sengupta, M. & Gotseff, P.
Partner: UNT Libraries Government Documents Department

Exploring the Variable Sky with the Sloan Digital Sky Survey

Description: We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, which lies along the celestial equator in the Southern Galactic Hemisphere (22h 24m < {alpha}{sub J2000} < 04h 08m, -1.27{sup o} < {delta}{sub J2000} < +1.27{sup o}, {approx} 290 deg{sup 2}), and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources that were observed at least 4 times in each of the gri bands (with a median of 10 observations obtained over {approx}5 years). In each photometric bandpass we compute various low-order lightcurve statistics such as root-mean-square scatter (rms), {chi}{sup 2} per degree of freedom, skewness, minimum and maximum magnitude, and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g = 20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (< 2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over ...
Date: April 1, 2007
Creator: Sesar, Branimir; Ivezic, Zeljko; Lupton, Robert; Juric, Mario; Gunn, James; Knapp, Gillian et al.
Partner: UNT Libraries Government Documents Department

Total Sky Imager Model 880 Status and Testing Results

Description: The Total Sky Imager (TSI) is manufactured by Yankee Environmental Systems (YES) Incorporated, based in Turner Falls, Massachusetts. (For more information about YES, see http://www.yesinc.com/.) The TSI is a commercialized version of the Hemispheric Sky Imager prototype (Long et al. 1998). YES has now produced a more sophisticated (compared to the original model 440) model 880 of the TSI (see Figure 1). The first YES TSI 880 was deployed at the Blackwell Tonkawa Airport (BTA) as part of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program 2000 Cloud intensive operational period (IOP). This TSI 880 collected data from March 2, 2000 through April 6, 2000. This report gives an assessment of the TSI based on the BTA and Southern Great Plane (SGP) Central Facility (CF) data collected to date.
Date: November 1, 2001
Creator: Long, CN; Slater, DW & Tooman, T
Partner: UNT Libraries Government Documents Department

Fermi Large Area Telescope Bright Gamma-ray Source List

Description: Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.
Date: May 15, 2009
Creator: Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC et al.
Partner: UNT Libraries Government Documents Department