10,355 Matching Results

Search Results

Advanced search parameters have been applied.

Diagnostics for the Combustion Science Workbench

Description: As the cost of computers declines relative to outfitting andmaintaining laser spectroscopy laboratories, computers will account foran increasing proportion of the research conducted in fundamentalcombustion science. W.C. Gardiner foresaw that progress will be limitedby the ability to understand the implications of what has been computedand to draw inferences about the elementary components of the combustionmodels. Yet the diagnostics that are routinely applied to computerexperiments have changed little from the sensitivity analyses includedwith the original chemkin software distribution. This paper describessome diagnostics capabilities that may be found on the virtual combustionscience workbench of the future. These diagnostics are illustrated bysome new results concerning which of the hydrogen/oxygen chain branchingreactions actually occur in flames, the increased formation of NOx inwrinkled flames versus flat flames, and the adequacy oftheoreticalpredictions of the effects of stretch. Several areas are identified wherework is needed, including the areas of combustion chemistry and laserdiagnostics, to make the virtual laboratory a reality.
Date: February 21, 2007
Creator: Grcar, J.F.; Day, M.S. & Bell, J.B.
Partner: UNT Libraries Government Documents Department

COLLABORATIVE: FUSION SIMULATION PROGRAM

Description: New York University, Courant Institute of Mathematical Sciences, participated in the “Fusion Simulation Program (FSP) Planning Activities” [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP’s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.
Date: June 5, 2012
Creator: Chang, Choong Seock
Partner: UNT Libraries Government Documents Department

Computer Simulation of Particulate Systems

Description: From Introduction: "The first objective of he present Bureau research was the development of a means to model random assemblies of circles and spheres that would accurately simulate actual particulate systems. The second objective of this research was to develop the computer simulations to the point where they could be used to predict real packaging or covering properties and to develop a body of data that could be used to improve and add to what is currently known about the statistical geometry of random particulate systems."
Date: unknown
Creator: Norman, Lindsay D.
Partner: UNT Libraries Government Documents Department

Modeling Complex Forest Ecology in a Parallel Computing Infrastructure

Description: Effective stewardship of forest ecosystems make it imperative to measure, monitor, and predict the dynamic changes of forest ecology. Measuring and monitoring provides us a picture of a forest's current state and the necessary data to formulate models for prediction. However, societal and natural events alter the course of a forest's development. A simulation environment that takes into account these events will facilitate forest management. In this thesis, we describe an efficient parallel implementation of a land cover use model, Mosaic, and discuss the development efforts to incorporate spatial interaction and succession dynamics into the model. To evaluate the performance of our implementation, an extensive set of simulation experiments was carried out using a dataset representing the H.J. Andrews Forest in the Oregon Cascades. Results indicate that a significant reduction in the simulation execution time of our parallel model can be achieved as compared to uni-processor simulations.
Date: August 2003
Creator: Mayes, John
Partner: UNT Libraries

Simulation Approaches for System of Systems: Event-Based versus Agent Based Modeling

Description: This paper from the 2015 Conference on Systems Engineering Research conference proceedings reviews different modeling techniques and uses two converse techniques, i.e. agent-based and event-based modeling, to run a simulation of hypothetical systems collaborating into a system of systems.
Date: March 16, 2015
Creator: Baldwin, W. Clifton; Sauser, Brian & Cloutier, Robert
Partner: UNT College of Business

Analog Simulation of the Hanford N-Reactor Plant, Part 1: Description of the Overall Simulation Model

Description: Report that describes Hanford Laboratories' overall N-Reactor plant simulation model and its use to study the characteristics of the plant, plant operational procedures, and the effects of plant, operator, and control system malfunctions.
Date: September 1, 1964
Creator: Swanson, C. D.; Coughren, K. D.; Dionne, P. J. & Thieme, G. G.
Partner: UNT Libraries Government Documents Department

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

Description: The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk groups of specific characteristics and devise containment strategies that facilitate health authorities to improve mitigation strategies.
Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
Partner: UNT Libraries

List mode reconstruction for PET with motion compensation: A simulation study

Description: Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.
Date: July 1, 2002
Creator: Qi, Jinyi & Huesman, Ronald H.
Partner: UNT Libraries Government Documents Department

List mode reconstruction for PET with motion compensation: A simulation study

Description: Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject moti is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time vary ingrate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts.
Date: July 3, 2002
Creator: Qi, Jinyi & Huesman, Ronald H.
Partner: UNT Libraries Government Documents Department

Implementations of mesh refinement schemes for particle-in-cell plasma simulations

Description: Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.
Date: October 20, 2003
Creator: Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P. & Serafini, D.B.
Partner: UNT Libraries Government Documents Department

IMPACT simulation and the SNS linac beam

Description: Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results.
Date: September 3, 2008
Creator: Zhang, Y. & Qiang, J.
Partner: UNT Libraries Government Documents Department

Modeling and Simulation of Long-Term Performance of Near-Surface Barriers

Description: Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone’s back yard); most of these storage sites include a surface barrier (cap) to prevent migration of the waste due to infiltration of surface water. The design lifespan for such barriers ranges from 30 to 1000 years, depending on hazard and regulations. In light of historical performance, society needs a better basis for predicting barrier performance over long time periods and tools for optimizing maintenance of barriers while in service. We believe that, as in other industries, better understanding of the dynamics of barrier system degradation will enable improved barriers (cheaper, longer-lived, simpler, easier to maintain) and improved maintenance. We are focusing our research on earthen caps, especially those with evapo-transpiration and capillary breaks. Typical cap assessments treat the barrier’s structure as static prior to some defined lifetime. Environmental boundary conditions such as precipitation and temperature are treated as time dependent. However, other key elements of the barrier system are regarded as constant, including engineered inputs (e.g., fire management strategy, irrigation, vegetation control), surface ecology (critical to assessment of plant transpiration), capillary break interface, material properties, surface erosion rate, etc. Further, to be conservative, only harmful processes are typically considered. A more holistic examination of both harmful and beneficial processes will provide more realistic pre-service prediction and in-service assessment of performance as well as provide designers a tool to encourage beneficial processes while discouraging harmful processes. Thus, the INEEL started a new project on long-term barrier integrity in April 2002 that aims to catalyze a ...
Date: February 1, 2003
Creator: Piet, Steven James; Jacobson, Jacob Jordan; Soto, Rafael; Martian, Pete & Martineau, Richard Charles
Partner: UNT Libraries Government Documents Department

Hydra: a service oriented architecture for scientific simulation integration

Description: One of the current major challenges in scientific modeling and simulation, in particular in the infrastructure-analysis community, is the development of techniques for efficiently and automatically coupling disparate tools that exist in separate locations on different platforms, implemented in a variety of languages and designed to be standalone. Recent advances in web-based platforms for integrating systems such as SOA provide an opportunity to address these challenges in a systematic fashion. This paper describes Hydra, an integrating architecture for infrastructure modeling and simulation that defines geography-based schemas that, when used to wrap existing tools as web services, allow for seamless plug-and-play composability. Existing users of these tools can enhance the value of their analysis by assessing how the simulations of one tool impact the behavior of another tool and can automate existing ad hoc processes and work flows for integrating tools together.
Date: January 1, 2008
Creator: Bent, Russell; Djidjev, Tatiana; Hayes, Birch P; Holland, Joe V; Khalsa, Hari S; Linger, Steve P et al.
Partner: UNT Libraries Government Documents Department

Speeding Up Simulations of Relativistic Systems using an Optimal Boosted Frame

Description: It can be computationally advantageous to perform computer simulations in a Lorentz boosted frame for a certain class of systems. However, even if the computer model relies on a covariant set of equations, it has been pointed out that algorithmic difficulties related to discretization errors may have to be overcome in order to take full advantage of the potential speedup. We summarize the findings, the difficulties and their solutions, and show that the technique enables simulations important to several areas of accelerator physics that are otherwise problematic, including self-consistent modeling in three-dimensions of laser wokefield accelerator stages at energies of 10 GeV and above.
Date: January 27, 2009
Creator: Vay, J.-L.; Fawley, W.M.; Geddes, C.G.R.; Cormier-Michel, E. & Grote, D.P.
Partner: UNT Libraries Government Documents Department

Numerical Predictions for the Demo Enclosure and Comparison to Experiment

Description: The ''demo enclosure'' is a small box meant to simulate the basic characteristics of an equipment enclosure, but without the complexity of an actual enclosure. Extensive experimental measurements have been made on the enclosure and are summarized in a companion report entitled ''Experimental Measurements of the Demo Enclosure''. In this report, we will summarize the associated numerical modeling of the enclosure's structural vibration and radiated sound field using finite and boundary element techniques. One of the main goals of the report is to establish useful modeling guidelines for finite and boundary element analyses of enclosures. Producing accurate predictions is of primary importance, but ease of implementation is also important. We will try to demonstrate that it is not always beneficial to try to duplicate all the enclosure's structural complexity in the finite and boundary element models because errors inevitably occur and it is frequently difficult to adjust the models without considerable effort. For example, it is relatively simple to produce accurate models for shelves and enclosures separately, but their interconnections are much more difficult to represent. When the models are combined into much larger finite element models, it becomes difficult and time consuming to optimize the modeling of the interconnections. Our research was thus directed towards developing simple methods for adjusting the individual models and combining them together after an initial unite element analysis.
Date: February 5, 2004
Creator: Fahnline, JB; Campbell, RL & Hambric, SA
Partner: UNT Libraries Government Documents Department

Macroscopic Modeling of Polymer-Electrolyte Membranes

Description: In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.
Date: April 1, 2007
Creator: Weber, A.Z. & Newman, J.
Partner: UNT Libraries Government Documents Department

Preface: Recent Advances in Modeling Multiphase Flow and Transportwith the TOUGH Family of Codes

Description: A symposium on research carried out using the TOUGH family of numerical codes was held from May 15 to 17, 2006, at the Lawrence Berkeley National Laboratory. This special issue of the 'Vadose Zone Journal' contains revised and expanded versions of a selected set of papers presented at this symposium (TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase flow, including flow in the vadose zone.
Date: November 15, 2007
Creator: Liu, Hui-Hai & Illangasekare, Tissa H.
Partner: UNT Libraries Government Documents Department

Recombination Parameters in InGaAsSb Epitaxial Layers for Thermophotovoltaic Applications

Description: Radio-frequency (RF) photoreflectance measurements and one-dimensional device simulations have been used to evaluate bulk recombination parameter and surface recombination velocity (SRV) in doubly-capped 0.55 eV, 2 x 10{sup 17} cm{sup -3} doped p-InGaAsSb epitaxial layers for thermophotovoltaic (TPV) applications. Bulk lifetimes of 90-100 ns and SRVs of 680 cm/s to 3200 cm/s (depending on the capping layer) are obtained, with higher doping and higher bandgap capping layers most effective in reducing SRV. RF photoreflectance measurements and one-dimensional device simulations are compatible with a radiative recombination coefficient (B) of 3 x 10{sup -11} cm{sup 3}/s and Auger coefficient (C) of 1 x 10{sup -28} cm{sup 6}/s.
Date: March 17, 2003
Creator: Kumar, R.J.; Gutmann, J.J.; Borrego, J.M.; Dutta, P.S.; Wang, C.A.; Martinelli, R.U. et al.
Partner: UNT Libraries Government Documents Department

PEBBLES Operation and Theory Manual

Description: The PEBBLES manual describes the PEBBLES code. The PEBBLES code is a computer program designed to simulation the motion, packing and vibration of spheres that undergo various mechanical forces including gravitation, Hooke’s law force and various friction forces. The frictional forces include true static friction that allows non-zero angles of repose. Each pebble is individually simulated using the distinct element method.
Date: February 1, 2011
Creator: Cogliati, Joshua J.
Partner: UNT Libraries Government Documents Department

DOCUMENTATION FOR PROGRAM OGRE

Description: This is a brief description of a computer program which was written by Oleh Weres to generate discrete grids for IFD* type computer programs. The output of the program includes data which can be used directly for input to the program SHAFT78. The program is specifically intended for large-scale two or three-dimensional reservoir simulation. The program requires, as input, the x, y, z coordinates of the discrete element locations being used to specify a particular reservoir's geological system. From the list of element locations, the program finds the midpoints of lines joining adjacent elements. At each midpoint the program constructs a perpendicular plane. The intersections of the planes in the three-space defines an irregular (in general) n-sided polyhedron around each element center. In two-dimensions the program produces a unique 'tiling' which has polygons with all faces perpendicular to the lines joining adjacent elements. The areas between adjoining elements and the volume of each element are calculated. The end result, in general, is a three-dimensional grid of n-sided polyhedra for which the element locations, the connecting (flow) areas, and the element volumes are all known. Since the grids are finite the program must have information about the boundary of the grid. This is supplied as a set of 'dummy' elements which are used only to limit the extent of the grid and are not intended for use in the reservoir simulation.
Date: June 1, 1978
Creator: Weres, O. & Schroeder, R.C.
Partner: UNT Libraries Government Documents Department

Distributing Planning and Control for Teams of Cooperating Mobile Robots

Description: This CRADA project involved the cooperative research of investigators in ORNL's Center for Engineering Science Advanced Research (CESAR) with researchers at Caterpillar, Inc. The subject of the research was the development of cooperative control strategies for autonomous vehicles performing applications of interest to Caterpillar customers. The project involved three Phases of research, conducted over the time period of November 1998 through December 2001. This project led to the successful development of several technologies and demonstrations in realistic simulation that illustrated the effectiveness of our control approaches for distributed planning and cooperation in multi-robot teams. The primary objectives of this research project were to: (1) Develop autonomous control technologies to enable multiple vehicles to work together cooperatively, (2) Provide the foundational capabilities for a human operator to exercise oversight and guidance during the multi-vehicle task execution, and (3) Integrate these capabilities to the ALLIANCE-based autonomous control approach for multi-robot teams. These objectives have been successfully met with the results implemented and demonstrated in a near real-time multi-vehicle simulation of up to four vehicles performing mission-relevant tasks.
Date: July 19, 2004
Creator: Parker, L. E.
Partner: UNT Libraries Government Documents Department