956 Matching Results

Search Results

Advanced search parameters have been applied.

Radiation damage measurements in room temperature semiconductor radiation detectors

Description: The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI{sub 2}) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10{sup 10} p/cm{sup 2} and significant bulk leakage after 10{sup 12} p/cm{sup 2}. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 {times} 10{sup 9} p/cm{sup 2} in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10{sup 10} n/cm{sup 2}, although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 {times} 10{sup 10} {alpha}/cm{sup 2} produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 {times} 10{sup 9} {alpha}/cm{sup 2}. CT detectors show resolution losses after fluences of 3 {times} 10{sup 9} p/cm{sup 2} at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 {times} 10{sup 10} n/cm{sup 2}. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10{sup 12} p/cm{sup 2} and with 1.5 GeV protons at fluences up to 1.2 {times} 10{sup 8} p/cm{sup 2}. Neutron exposures at 8 MeV have been reported at fluences up to 10{sup 15} n/cm{sup 2}. No radiation damage was reported under these irradiation conditions.
Date: December 1, 1998
Creator: Franks, L.A.; Olsen, R.W.; James, R.B.; Brunett, B.A.; Walsh, D.S.; Doyle, B.L. et al.
Partner: UNT Libraries Government Documents Department

CryoFree Final Report

Description: CryoFree, a gamma-ray spectrometer, has been built and successfully tested. This instrument is based on a planar germanium semiconductor detector and is optimized for high-resolution spectroscopy in the range of a 30 keV to a few hundred keV to detect U and Pu. The spectrometer is cooled with a mechanical cryocooler that obviates the need for liquid cryogen. Furthermore, the instrument is battery powered. The combination of mechanical cooling and battery operation allows high-resolution spectroscopy in a highly-portable field instrument. A description of the instrument along with its performance is given.
Date: November 7, 2006
Creator: Burks, M
Partner: UNT Libraries Government Documents Department

An Automatic Lithium Drifting Apparatus for Silicon and Germanium Detectors

Description: Drifting a thick lithium-drifted counter (silicon and germanium) is a time-consuming operation that frequently results in a poor device, owing to inadequate knowledge of progress of the drifting operation. The drifting apparatus described here automatically controls the temperature of the detector that is being drifted to maintain the leakage current at a preselected value. While drifting proceeds, a continuous measurement is made of the distance of the lithium-drifted region from the opposite face of the wafer. When the drifted region reaches 30 mil or less from the back of the wafer a meter indicates the thickness of the undrifted region and, when this thickness falls below a preselected value, the temperature of the detector is automatically reduced to room temperature. The need for constant supervision of the drifting operation is thereby eliminated, and reliance on theoretical drift-rate calculations to predict the drift-through time is avoided. The technique has been applied to the manufacture of lithium-drifted silicon detectors with excellent results. The application of the technique to lithium-drifted germanium {gamma} detectors is also discussed briefly.
Date: February 8, 1964
Creator: Goulding, Fred S. & Hansen, W. L.
Partner: UNT Libraries Government Documents Department

Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

Description: Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated.
Date: October 1, 1996
Creator: Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W. & Ziemba, F.P.
Partner: UNT Libraries Government Documents Department

CCI1 Basic Detector Performance

Description: This document describes the basic detector performance for the CCI1 device, which consists of the Si2 and Ge2 detector components.
Date: June 2, 2005
Creator: Lange, D; Manini, H; Wright, D; Cunningham, M & Vetter, K
Partner: UNT Libraries Government Documents Department

Theoretical band structure analysis on possible high-Z detector materials

Description: Theoretical energy band structure calculations have been utilized to investigate several high-Z materials for potential use as ambient temperature radiation detectors. Using the pseudopotential technique, the band structure for HgI$sub 2$ has been determined and the effective masses of the holes and electrons have been estimated. Theoretical mobilities of the electrons and holes as a function of temperature have been computed for HgI$sub 2$ and CdTe and are compared to experimental data. (auth)
Date: November 18, 1975
Creator: Yee, J.H.; Sherohman, J.W. & Armantrout, G.A.
Partner: UNT Libraries Government Documents Department

Methods for deconvoluting and interpreting complex gamma- and x-ray spectral regions

Description: Germanium and silicon detectors are now widely used for the detection and measurement of x and gamma radiation. However, some analysis situations and spectral regions have heretofore been too complex to deconvolute and interpret by techniques in general use. One example is the L x-ray spectrum of an element taken with a Ge or Si detector. This paper describes some new tools and methods that were developed to analyze complex spectral regions; they are illustrated with examples.
Date: June 1, 1983
Creator: Gunnink, R.
Partner: UNT Libraries Government Documents Department

Recent Results From a Si/CdTe Semiconductor Compton Telescope

Description: We are developing a Compton telescope based on high resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma-rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9{sup o} (FWHM) at 511 keV, and the energy resolution is 14 keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating {sup 137}Cs source, we successfully obtained an image and a spectrum of 662 keV line emission with this method. As a next step, development of larger double-sided Si strip detectors with a size of 4 cm x 4 cm is underway to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well.
Date: January 23, 2007
Creator: Tanaka, T.; Watanabe, S.; Takeda, S.; Oonuki, K.; Mitani, T.; Nakazawa, K. et al.
Partner: UNT Libraries Government Documents Department

Results of a Si/Cdte Compton Telescope

Description: We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton Telescope, we have developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton equation from 122 keV to 662 keV. The energy resolution (FWHM) of reconstructed spectra is 7.3 keV at 511 keV and 3.1 keV at 122 keV, respectively. The angular resolution obtained at 511 keV is measured to be 12.2{sup o}(FWHM).
Date: September 23, 2005
Creator: Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi et al.
Partner: UNT Libraries Government Documents Department

Recent developments in semiconductor gamma-ray detectors

Description: The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.
Date: October 28, 2003
Creator: Luke, Paul N.; Amman, Mark; Tindall, Craig & Lee, Julie S.
Partner: UNT Libraries Government Documents Department

Proposed method of assembly for the BCD silicon strip vertex detector modules

Description: The BCD Silicon strip Vertex Detector is constructed of 10 identical central region modules and 18 similar forward region modules. This memo describes a method of assembling these modules from individual silicon wafers. Each wafer is fitted with associated front end electronics and cables and has been tested to insure that only good wafers reach the final assembly stage. 5 figs.
Date: October 16, 1989
Creator: Lindenmeyer, C.
Partner: UNT Libraries Government Documents Department

Performance of the CDF Silicon VerteX detector

Description: The current status of the online and offline performance of the CDF Silicon VerteX detector is presented. So far, at low radiation dose, the device delivers good quality data. After the latest alignment using collision data, a spatial resolution of 13 pm is achieved in the transverse plane, demonstrating that CDF has a powerful tool to detect b decay vertices.
Date: November 1, 1992
Creator: Schneider, O. (Lawrence Berkeley Lab., CA (United States))
Partner: UNT Libraries Government Documents Department

Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

Description: Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, {tau}{sub B}, and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to {tau}{sub B} and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions.
Date: October 1, 1993
Creator: Derhacobian, N.; Fine, P.; Walton, J. T.; Wong, Y. K.; Rossington, C. S. & Luke, P. N.
Partner: UNT Libraries Government Documents Department

The Cold Dark Matter Search test stand warm electronics card

Description: A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.
Date: November 1, 2010
Creator: Hines, Bruce; /Colorado U., Denver; Hansen, Sten; /Fermilab; Huber, Martin; /Colorado U., Denver et al.
Partner: UNT Libraries Government Documents Department

SOI detector with drift field due to majority carrier flow - an alternative to biasing in depletion

Description: This paper reports on a SOI detector with drift field induced by the flow of majority carriers. It is proposed as an alternative method of detector biasing compared to standard depletion. N-drift rings in n-substrate are used at the front side of the detector to provide charge collecting field in depth as well as to improve the lateral charge collection. The concept was verified on a 2.5 x 2.5 mm{sup 2} large detector array with 20 {micro}m and 40 {micro}m pixel pitch fabricated in August 2009 using the OKI semiconductor process. First results, obtained with a radioactive source to demonstrate spatial resolution and spectroscopic performance of the detector for the two different pixel sizes will be shown and compared to results obtained with a standard depletion scheme. Two different diode designs, one using a standard p-implantation and one surrounded by an additional BPW implant will be compared as well.
Date: November 1, 2010
Creator: Trimpl, M.; Deptuch, G.; Yarema, R. & /Fermilab
Partner: UNT Libraries Government Documents Department

FPGA curved track fitter with very low resource usage

Description: Standard least-squares curved track fitting process is tailored for FPGA implementation. The coefficients in the fitting matrices are carefully chosen so that only shift and accumulation operations are used in the process. The divisions and full multiplications are eliminated. Comparison in an application example shows that the fitting errors of the low resource usage implementation are less than 4% bigger than the fitting errors of the exact least-squares algorithm. The implementation is suitable for low-cost, low-power applications such as high energy physics detector trigger systems.
Date: November 1, 2006
Creator: Wu, Jin-Yuan; Wang, M.; Gottschalk, E.; Shi, Z. & /Fermilab
Partner: UNT Libraries Government Documents Department

Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

Description: The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, <5 mm, the electric field-lines tend to bend away from the side surfaces (i.e., a focusing effect). In thick detectors, >1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field.
Date: October 19, 2009
Creator: Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H. W. et al.
Partner: UNT Libraries Government Documents Department

CCI1 and CCI2 Detector Simulations and Figure-of-Merit Study

Description: We simulate the CCI1 and CCI2 detectors, using GEANT4, to study the figure of merit (FOM) for each detector. For both CCI1 and CCI2, we study how the FOM depends on strip pitch, z resolution, and lever-cut distance. For CCI2, we study how the FOM depends on the separation distance between the two silicon detectors, and the separation distance between the two germanium detectors. We also simulate future large-scale detector systems and calculate their FOM.
Date: August 31, 2005
Creator: Lange, D; Manini, H & Wright, D
Partner: UNT Libraries Government Documents Department


Description: We studied the effects of small, <20 {micro}m, Te inclusions on the energy resolution of CdZnTe gamma-ray detectors using a highly collimated X-ray beam and gamma-rays, and modeled them via a simplified geometrical approach. Previous reports demonstrated that Te inclusions of about a few microns in diameter degraded the charge-transport properties and uniformity of CdZnTe detectors. The goal of this work was to understand the extent to which randomly distributed Te-rich inclusions affect the energy resolution of CZT detectors, and to define new steps to overcome their deleterious effects. We used a phenomenological model, which depends on several adjustable parameters, to reproduce the experimentally measured effects of inclusions on energy resolution. We also were able to hound the materials-related problem and predict the enhancement in performance expected by reducing the size and number of Te inclusions within the crystals.
Date: October 29, 2006
Creator: BOLOTNIKOV, A.E.; CAMARDA, G.S.; CUI, Y.; KOHMAN, K.T.; LI, L.; SALOMON, M.B. et al.
Partner: UNT Libraries Government Documents Department

Simulated Performance of a Second-Generation Compact Compton Imaging Detector

Description: Simulations are performed using GEANT4 of a second-generation compact Compton imaging detector called CCI2 which uses silicon and germanium detector crystals. Realistic simulated detector geometry and realistic detector parameters are used. Results are obtained for the CCI2 detector for the intrinsic photopeak efficiency, imaging efficiency, and angular resolution, and simulated images are created for point sources with various energies and source angles.
Date: January 16, 2007
Creator: Manini, H A
Partner: UNT Libraries Government Documents Department

Simulation and Analysis of Large-Scale Compton Imaging Detectors

Description: We perform simulations of two types of large-scale Compton imaging detectors. The first type uses silicon and germanium detector crystals, and the second type uses silicon and CdZnTe (CZT) detector crystals. The simulations use realistic detector geometry and parameters. We analyze the performance of each type of detector, and we present results using receiver operating characteristics (ROC) curves.
Date: December 27, 2006
Creator: Manini, H A; Lange, D J & Wright, D M
Partner: UNT Libraries Government Documents Department


Description: Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.
Date: October 29, 2006
Partner: UNT Libraries Government Documents Department