17 Matching Results

Search Results

Advanced search parameters have been applied.

HYDROCARBONS OF BIOLOGICAL ORIGIN FROM A ONE-BILLION YEAR OLDSEDIMENT

Description: The isoprenoid hydrocarbons, phytane (C{sub 20}H{sub 42}) and pristane (C{sub 19}H{sub 40}) are present in the oil seeping from the Pre-Cambrian Nonesuch Formation at the White Pine Mine, Michigan. Gas-liquid chromatography and mass spectrometry provide the isolation and identification procedures.
Date: May 1, 1964
Creator: Eglinton, Geoffrey.; Scott, P.M.; Belsky, Ted.; Burlingame, A.L.; Calvin, Melvin. & Cloud Jr., Preston E.
Partner: UNT Libraries Government Documents Department

Geobotanical and lineament analysis of sandsat satellite imagery for hydrocarbon microseeps

Description: Both geobotanical and structural interpretations of remotely sensed data tend to be plagued by random associations. However, a combination of these methods has the potential to provide a methodology for excluding many false associations. To test this approach, a test site in West Virginia has been studied using remotely sensed and field data. The historic Volcano Oil Field, in Wood, Pleasants and Ritchie Counties was known as an area of hydrocarbon seeps in the last century. Although pressures in the reservoir are much reduced today, hydrocarbons remain in the reservoir. An examination of a multi-seasonal Landsat Thematic Mapper imagery has shown little difference between the forests overlying the hydrocarbon reservoirs compared to the background areas, with the exception of an image in the very early fall. This image has been enhanced using an nPDF spectral transformation that maximizes the contrast between the anomalous and background areas. A field survey of soil gas chemistry showed that hydrocarbon concentration is generally higher over the anomalous region. In addition, soil gas hydrocarbon concentration increases with proximity to linear features that cross the strike of the overall structure of the reservoir. Linear features that parallel the strike, however, do not have any discernible influence on gas concentration. Field spectral measurements were made periodically through the summer and early fall to investigate the origin of the spectral reflectance anomaly. Measurements were made with a full-range spectro-radiometer (400 nm to 2500 nm) on a number of different species, both on and off the spectral anomaly. The results lend support to the finding that in the early fall spectral reflectance increases in the near infrared and mid infrared in the spectrally anomalous regions.
Date: October 1, 1997
Creator: Warner, T.A.
Partner: UNT Libraries Government Documents Department

Fort Peck Reservation Assessment of Hydrocarbon Seepage

Description: The following work was performed: (1) Identified three test areas for Phase I, (2) Selected nine surface exploration methods for comparison, (3) contracted six geochemical companies for laboratory analysis and interpretation, (4) sub-contracted one surface geochemical method for field collection and analysis, (5) Acquired free data for one surface exploration method, (6) Collected samples from 27 sites in Area 7 and 210 sites in Area 6, and (7) Began the database creation, comparison, mapping, and interpretation of all data from the two sampled areas.
Date: July 25, 2001
Creator: Monson, Lawrence M.
Partner: UNT Libraries Government Documents Department

Phase II Interim Report -- Assessment of Hydrocarbon Seepage Detection Methods on the Fort Peck Reservation, Northeast Montana

Description: The following work was performed: (1) collected reconnaissance micro-magnetic data and background field data for Area 1, (2) identified and collected soil sample data in three anomalous regions of Area 1, (3) sampled soils in Northwest Poplar Oil Field, (4) graphed, mapped, and interpreted all data areas listed above, (5) registered for the AAPG Penrose Conference on Hydrocarbon Seepage Mechanisms and Migration (postponed from 9/16/01 until 4/7/02 in Vancouver, B.C.). Results include the identification and confirmation of an oil and gas prospect in the northwest part of Area 1 and the verification of a potential shallow gas prospect in the West Poplar Area. Correlation of hydrocarbon micro-seepage to TM tonal anomalies needs further data analysis.
Date: April 24, 2002
Creator: Monson, Lawrence M.
Partner: UNT Libraries Government Documents Department

Atwater Valley Deep-Towed Sidescan Sonar Imagery and Bathymetric Survey

Description: The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100 kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. The backscatter data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry , DTAGS and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.
Date: November 22, 2005
Creator: Gardner, Joan M.; Czarnecki, Mike; Hagen, Rick; Nishimura, Clyde; Wood, Warren; Vaughn, Chad et al.
Partner: UNT Libraries Government Documents Department

Selection and use of equipment for the sampling of liquids

Description: The selection of sampling equipment for the collection of liquid waste is based on factors such as the viscosity of the sample matrix, matrix compatibility with the construction materials of the sampling device, and the physical location of the sampling point. This report provides information relating to sampling from such matrices as ground and surface waters, vadose zones, containerized liquids, lagoons, and seeps. It is intended to be a reference tool for personnel involved with the collection of liquid samples throughout the Department of Energy complex. This report provides a general overview of many liquid sampling devices used and for each device it provides a short narrative regarding applicability, an outline of the basic procedure for use, a list of advantages and disadvantages, and an illustration.
Date: November 1, 1995
Creator: Johnson, M.
Partner: UNT Libraries Government Documents Department

Prototype development of an apparatus to locate and map sea floor petroleum seepages. 1: Quarterly technical progress report, August 1--October 31, 1995

Description: There has been progress in three areas: electronic design, mechanical design, and experiment/research. Originally it had been conceived that off-the-shelf components could be developed into a system. This approach, which employed a single Keithley electrometer, was eventually set aside because inadequate impedance was noted in the switching circuitry. A design employing multiple electrometer amplifiers, each of high impedance (0.3 x 10E15 ohms) having no switching between the measurement electrodes and the amplifiers, was adopted. No significant changes in the mechanical design were made. Objectives in this work also include (a) the prediction and future interpretation of measured electrical potentials which are directly interpretable in terms of sulfide, hydrosulfide, and sulfate ion concentrations in marine sediments; (b) the development of an information base for presentation to potential clients; and (c) the location of marine regions of activity and the assessment of possible findings.
Date: October 31, 1995
Creator: Thompson, K.F.
Partner: UNT Libraries Government Documents Department

Correlation of producing Fruitland Formation coals within the western outcrop and coalbed methane leakage on the Southern Ute Reservation

Description: The Colorado Geological Survey and Southern Ute Indian Tribe proposed to determine the cause of several gas seeps which are occurring on the western outcrop of the coalbed methane producing Fruitland Formation on the Southern Ute Indian Reservation. Correlation between outcrop coals and subsurface coals was necessary to determine seep source in the northern part of the study area. Subsurface studies include structure and net coal isopach maps, stratigraphy was cross-sections, production maps, and a production database. Detailed coal stratigraphy was correlated through production wells near the outcrop region. These maps and cross-sections were correlated to new surface outcrop maps generated by the Colorado, Geological Survey and the Southern Ute Division of Energy Resources. Methane gas seepage has been noted historically within the study area. The total investigation may help determine if gas seepage is natural, a result of coalbed methane development, or some combination of the above.
Date: July 7, 2000
Creator: Carroll, Christopher J. Mathews, Stephanie, Wickman, Barbara
Partner: UNT Libraries Government Documents Department

POST-PROCESSING ANALYSIS FOR THC SEEPAGE

Description: This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and management of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P&CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P&CE (BSC 2004 [DIRS 169860], Section 6.6) were also subjected to the same initial selection. The present report serves as a full ...
Date: September 29, 2004
Creator: SUN, Y.
Partner: UNT Libraries Government Documents Department

Preliminary Engineering Report contaminated groundwater seeps 317/319/ENE area

Description: When the Resource Conservation and Recovery Act Facility Investigation (RFI) in the 317/319/ENE Area of Argonne National Laboratory-East (ANL-E) was being completed, groundwater was discovered moving to the surface through a series of seeps. The seeps are located approximately 600 ft south of the ANL fence line in Waterfall Glen Forest Preserve. Samples of this water were collected and analyzed for selected parameters. Two of five seeps sampled were found to contain detectable levels of organic contaminants. Three chemical species were identified: chloroform (14-25 {mu}g/L), carbon tetrachloride (56-340 {mu}g/L), and tetrachloroethylene (3-6 {mu}g/L). The other seeps did not contain detectable levels of volatile organic compounds (VOCs). The water issuing from these two contaminated seeps flows into a narrow ravine, where it is visible as a trickle of water flowing through sand and gravel deposits on the floor of the ravine. Approximately 100-ft downstream of the seep area, the contaminated water is no longer visible, having drained back into the soil in the bed of the ravine. Figure 1 shows the location of the 317/319/ENE Area in relation to the ANL-E site and the Waterfall Glen Forest Preserve.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department

Prototype development of an apparatus to locate and map sea floor petroleum seepages. Final technical report

Description: The objective of the grant was to design, build, and test two autonomous instruments to measure vertical profiles of electrical potential in sea floor sediments. The objectives were fully met when the instruments were successfully deployed in 1,800 feet of water at known petroleum seepage sites in the Gulf of Mexico. The instruments were proven to be able to measure and record signals known to be appropriate to sediments altered by seepage. Two known seepage sites were visited on September 18th and 20th, 1996. At the first, a small-scale instrument capable of measuring 60 cm into the sediment was repeatedly emplaced by the manipulator arm of a research submarine, along a sea floor traverse. Further, the large-scale instrument, having a probe 3.3 m in length, was deployed by steel cable from the ship and emplaced in the sediment under gravity. Both successfully recorded data from multiple electrodes, revealing the expected negative potentials (Eh values at low at {minus}230 mV) at, and close to, the sediment-water interface, instead of at the normal depths of 3 to 4 m.
Date: October 1, 1996
Partner: UNT Libraries Government Documents Department

Annual report of decommissioning and remedial action S&M activities for the Environmental Management Program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

Description: The Oak Ridge National Laboratory (ORNL) Surveillance and Maintenance (S&M) Program performs a variety of activities to ensure that sites and facilities within its responsibility remain in a safe condition and in compliance with applicable regulations. All S&M Program activities during fiscal year (FY) 1997 were accomplished safely, with no health and safety incidents, no lost work days, and no environmental noncompliances. In addition, all activities were performed within schedule thresholds and under budget. Many remedial action (RA) sites and decontamination and decommissioning (D&D) facilities are inspected and maintained by the S&M Program. RA sites encompass approximately 650 acres and 33 D&D facilities, including 4 inactive reactors. During FY 1997, routine, preventative, and emergency maintenance activities were performed as needed at these sites and facilities. Stabilization activities were also performed to reduce risks and reduce future S&M costs. Major activities at the RA sites during FY 1997 included maintaining proper liquid levels in surface impoundments and inactive -liquid low-level waste storage tanks as well as installing a new cover at the tumulus pads in Waste Area Grouping (WAG) 6, planting trees in the First Creek Riparian Corridor, and performing over 900 well inspections. Postremediation monitoring was conducted at the 3001 Canal, Core Hole 8, the WAG 6 Resource Conservation and Recovery caps, and WAG 5 Seeps C and D; groundwater monitoring was performed in WAGs 4, 5, and 6 and at the 3001 Canal Well. At ORNL D&D facilities, significant accomplishments included contaminated lead brick removal, asbestos abatement, contaminated equipment and debris removal, and radiologically contaminated area painting.
Date: November 1, 1997
Partner: UNT Libraries Government Documents Department

Prototype development of an apparatus to locate and map sea floor petroleum seepages. First quarterly technical progress report, August 1, 1995--October 31, 1995

Description: This document is the first quarterly technical progress report for the project entitled {open_quotes}Prototype Development of an Apparatus to Locate and Map Sea Floor Petroleum Seepages{close_quotes}. This report describes progress in three areas: electronic design, mechanical design, and experiment/research.
Date: December 1, 1995
Partner: UNT Libraries Government Documents Department

Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

Description: In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.
Date: December 31, 1994
Partner: UNT Libraries Government Documents Department

Risk assessment of seeps from the 317 Area of Argonne National Laboratory

Description: Chlorinated hydrocarbon contaminants have recently been detected in groundwater seeps on forest preserve property south of the 317 Area at ANL. The 317 Area is near ANL`s southern boundary and is considered the source of the contamination. Five seeps are about 200 m south of the ANL property line and about same distance from the nearest developed trails in the forest preserve. Conservative assumptions were used to assess the possibility of adverse health effects associated with forest preserve seeps impacted by the 317 Area. Results indicate that neither cancer risks nor noncarcinogenic effects associated with exposures to seep contaminants are a concern; thus, the area is safe for all visitors. The ecological impact study found that the presence of the three contaminants (CCl{sub 4}, CHCl{sub 3}, tetrachloroethylene) in the seep water does not pose a risk to biota in the area.
Date: September 17, 1996
Partner: UNT Libraries Government Documents Department

Prototype development of an apparatus to locate and map sea floor petroleum seepages. Final technical report

Description: The objective of the grant was to design, build, and test two autonomous instruments to measure vertical profiles of electrical potential in sea floor sediments. The objectives were fully met when the instruments were successfully deployed in 1,800 feet of water at known petroleum seepage sites in the Gulf of Mexico. The instruments were proven to be able to measure and record signals known to be appropriate to sediments altered by seepage. Two known seepage sites were visited on September 18th and 20th, 1996. At the first, a small-scale instrument capable of measuring 60 cm into the sediment was repeatedly emplaced by the manipulator arm of a research submarine, along a sea floor traverse. Further, the large-scale instrument, having a probe 3.3 m in length, was deployed by steel cable from the ship and emplaced in the sediment under gravity. Both successfully recorded data from multiple electrodes, revealing the expected negative potentials (Eh values as low as {minus}230 mV) at, and close to, the sediment-water interface, instead of at the normal depths of 3 to 4 m.
Date: December 31, 1997
Creator: Thompson, K.F.
Partner: UNT Libraries Government Documents Department