198 Matching Results

Search Results

Advanced search parameters have been applied.

Sealing concepts for the Waste Isolation Pilot Plant (WIPP) site

Description: The Waste Isolation Pilot Plant (WIPP) facility is proposed for development in the southeast portion of the State of New Mexico. The proposed horizon is in bedded salt located approximately 2150 ft below the surface. The purpose of the WIPP is to provide an R&D facility to demonstrate the safe disposal of radioactive wastes resulting from defense activities of the United States. As such, it will include a disposal demonstration for transuranic (TRU) wastes and an experimental area to address issues associated with disposal of defense high level wastes (DHLW) in bedded salt. All DHLW used in the experiments are planned for retrieval at the termination of testing; the TRU waste can be permanently disposed of at the site after the pilot phase is complete. This report addresses only the Plugging and Sealing program, which will result in an adequate and acceptable technology for final sealing and decommissioning of the facility at the WIPP site. The actual plugging operations are intended to be conducted on a commercial industrial basis through contracts issued by the DOE. This report is one in a series that is based on a technical program of modeling, laboratory materials testing and field demonstration which will provide a defensible basis for the actual plugging operations to be conducted by the DOE for final closure of the facility.
Date: September 1, 1982
Creator: Christensen, C.L.; Gulick, C.W. & Lambert, S.J.
Partner: UNT Libraries Government Documents Department

Hydrostatic Mooring System

Description: This report is a summary of the following topics of the first quarter of 2000: (1) Han Padron Associates (HPA) provided conceptual structural design of the mooring buoy; and (2) they completed partial review of the HPA design and designed the sealing elements.
Date: April 25, 2000
Creator: Korsgaarb, Jens
Partner: UNT Libraries Government Documents Department


Description: Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of organic materials used in the model 9975 package.[1] The experiments were completed within the framework of a parametric test matrix with variables of organic configuration, temperature, humidity and the effect of durations of exposure on the corrosion of lead in the 9975 package. The room temperature vulcanizing (RTV) sealant was the most corrosive organic species in the testing, followed by the polyvinyl acetate (PVAc) glue. The Celotex{copyright} material uniquely induced measurable corrosion only in situations with condensed water, and to a much lesser extent than the PVAc glue and RTV. The coupons exhibited faster corrosion at higher temperatures than at room temperatures. There was a particularly pronounced effect of condensed water as the coupons exposed in the cells with condensed water exhibited much higher corrosion rates. In the 9975 package, the PVAc glue was determined to be the most aggressive due to it's proximity in the design. The condition considered most representative of the package conditions is that of the coupon exposed to the Celotex{copyright}/glue organic exposed in the ambient humidity conditions. The corrosion rate of 2 mpy measured in the laboratory experiments for this condition is considered to be a bounding condition to the 9975 package conditions when the laboratory results are extrapolated to actual package conditions, and is recommended as a conservative estimate for package performance calculations.
Date: March 15, 2006
Creator: Subramanian, K
Partner: UNT Libraries Government Documents Department

A fabircation report on L'Garde Y267 geothermal compound

Description: A technology transfer was made from L'Garde to Precision Rubber Products for the fabrication of L'Garde geothermal seal compound Y267. Precision Rubber reports their experience as fabricators and gives field reports from three of their customers. Most of the experience has been very successful.
Date: October 8, 1982
Creator: Gillette, Howard
Partner: UNT Libraries Government Documents Department

Supercement for Annular Seal and Long-Term Integrity in Deep, Hot Wells "Deep Trek"

Description: The purpose of this project is to formulate a ''Supercement'' designed for improving the long-term sealing integrity in HPHT wells. Phase I concentrated on chemistry studies and screening tests to design and evaluate Portland-based, hybrid Portland, and non-Portland-based cement systems suitable for further scale-up testing. Phase II work concentrated on additional lab and field testing to reduce the candidate materials list to two systems, as well as scale up activities aimed at verifying performance at the field scale. Phase II was extended thorough a proposal to develop additional testing capabilities aimed at quantifying cementing material properties and performance that were previously not possible. Two materials are being taken into Phase III for field testing and commercialization: {lg_bullet} Highly-expansive cement (Portland-based), patent pending as ''Pre-Stressed Cement'' {lg_bullet} Epoxy Resin (non-Portland-based), patent pending In Phase II, significant effort was expended on scaling up the processes for handling resin in the field, as it is quite different than conventional Portland-based cements in mixing, personnel protection, and cleanup. Through this effort, over fifty (50) field jobs were done at a variety of temperatures and depths, most with excellent results. Large-scale field testing was less relevant with Pre-stressed Cement, because the materials and surface processes do not vary from those that have been developed for conventional Portland materials over the last eighty (80) years. The formulation is quite unique, however, and performs very differently than conventional Portland cements downhole.
Date: August 31, 2005
Creator: Edgley, Kevin D.; Sabins, Fred L. & Watters, Larry T.
Partner: UNT Libraries Government Documents Department

Uranium Metal Reaction Behavior in Water, Sludge, and Grout Matrices

Description: This report summarizes information and data on the reaction behavior of uranium metal in water, in water-saturated simulated and genuine K Basin sludge, and in grout matrices. This information and data are used to establish the technical basis for metallic uranium reaction behavior for the K Basin Sludge Treatment Project (STP). The specific objective of this report is to consolidate the various sources of information into a concise document to serve as a high-level reference and road map for customers, regulators, and interested parties outside the STP (e.g., external reviewers, other DOE sites) to clearly understand the current basis for the corrosion of uranium metal in water, sludge, and grout.
Date: September 25, 2008
Creator: Delegard, Calvin H. & Schmidt, Andrew J.
Partner: UNT Libraries Government Documents Department

Resilient Sealing Materials for Solid Oxide Fuel Cells

Description: This report describes the development of ''invert'' glass compositions designed for hermetic seals in solid oxide fuel cells (SOFC). Upon sealing at temperatures compatible with other SOFC materials (generally {le}900 C), these glasses transform to glass-ceramics with desirable thermo-mechanical properties, including coefficients of thermal expansion (CTE) over 11 x 10{sup -6}/C. The long-term (>four months) stability of CTE under SOFC operational conditions (e.g., 800 C in wet forming gas or in air) has been evaluated, as have weight losses under similar conditions. The dependence of sealant properties on glass composition are described in this report, as are experiments to develop glass-matrix composites by adding second phases, including Ni and YSZ. This information provides design-guidance to produce desirable sealing materials.
Date: September 30, 2006
Creator: Reis, Signo T. & Brow, Richard K.
Partner: UNT Libraries Government Documents Department

Bentonite as a waste isolation pilot plant shaft sealing material

Description: Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.
Date: December 1, 1996
Creator: Daemen, J. & Ran, Chongwei
Partner: UNT Libraries Government Documents Department

Fiber optic assembly and method of making same

Description: There is provided an assembly having a light guiding medium sealed to a holder. Preferably the holder is a metal shell and a light guiding medium is an optical fiber of glass or sapphire whisker. The assembly includes a sealing medium which sealingly engages the metal holder to the fiber. In the formation of the assembly, the seal is essentially hermetic having a capability of minimizing leakage having a helium leak rate of less than 1 {times} 10{sup {minus}8} cubic centimeters per second and high strength having a capability of withstanding pressures of 100,000 psi or greater. The features of the assembly are obtained by a specific preparation method and by selection of specific starting materials. The fiber is selected to have a sufficiently high coefficient of thermal expansion which minimizes strains in the component during fabrication, as a result of fabrication, and during use. The other components are selected to be of a material having compatible coefficients of thermal expansion (TEC) where the TEC of the holder is greater than or equal to the TEC of the sealing material. The TEC of the sealing material is in turn greater than or equal to the TEC of the fiber. It is preferred that the materials be selected so that their respective coefficients of thermal expansion are close as possible to one another and they may all be equal.
Date: December 31, 1995
Creator: Kramer, D.P. & Beckman, T.M.
Partner: UNT Libraries Government Documents Department

Fiscal year 1995 well plugging and abandonment program Y-12 Plant, Oak Ridge, Tennessee

Description: This report is a synopsis of the progress of the well plugging and abandonment program at the Y-12 Plant, Oak Ridge, Tennessee, from September 1994 through August 1995. A total of 67 wells, piezometers, and borings were plugged and abandoned during the period of time covered in this report. All wells and borings were plugged and abandoned if (1) its construction did not meet current standards (substandard construction); (2) it was irreparably damaged or had deteriorated beyond practical repair; (3) its location interfered with or otherwise impeded site operations, construction, or closure activities; or (4) special circumstances existed as defined on a case-by-case basis and approved by the Y-12 Plant Groundwater Protection Program (GWPP) Manager. This summary report contains: general geologic setting of the Y-12 Plant and vicinity; discussion of well plugging and abandonment methods, grouting procedures, and waste management practices (a Waste Management Plan for Drilling Activities is included in Appendix C); summaries of plugging and abandonment activities at each site; and quality assurance/quality control (QA/QC) and health and safety protocols used during the FY 1995 Plugging and Abandonment Program.
Date: September 1995
Partner: UNT Libraries Government Documents Department

Development and evaluation of sealing technologies for photovoltaic panels

Description: This report summarizes the results of a study to develop and evaluate low temperature glass sealing technologies for photovoltaic applications. This work was done as part of Cooperative Research and Development Agreement (CRADA) No. SC95/01408. The sealing technologies evaluated included low melting temperature glass frits and solders. Because the glass frit joining required a material with a melting temperature that exceeded the allowable temperature for the active elements on the photovoltaic panels a localized heating scheme was required for sealing the perimeter of the glass panels. Thermal and stress modeling were conducted to identify the feasibility of this approach and to test strategies designed to minimize heating of the glass panel away from its perimeter. Hardware to locally heat the glass panels during glass frit joining was designed, fabricated, and successfully tested. The same hardware could be used to seal the glass panels using the low temperature solders. Solder adhesion to the glass required metal coating of the glass. The adhesion strength of the solder was dependent on the surface finish of the glass. Strategies for improving the polyisobutylene (PIB) adhesive currently being used to seal the panels and the use of Parylene coatings as a protective sealant deposited on the photovoltaic elements were also investigated. Starting points for further work are included.
Date: July 1, 1998
Creator: Glass, S.J.; Hosking, F.M. & Baca, P.M.
Partner: UNT Libraries Government Documents Department

Radioactive material package closures with the use of shape memory alloys

Description: When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.
Date: November 1, 1997
Creator: Koski, J.A. & Bronowski, D.R.
Partner: UNT Libraries Government Documents Department


Description: This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.
Date: September 1, 2004
Creator: Romano, Michael A.
Partner: UNT Libraries Government Documents Department

Recent advances in magnetic liquid sealing

Description: In this paper recent work in design and testing of two special magnetic liquid seals extending the state-of-the-art of ferrofluidic sealing is discussed. These custom seals are a moving belt edge seal and an exclusion seal. The first seal provides a hermetic barrier to solid particulates expected to be present in enclosed nuclear environments. The second seal is used on a magnetic disk drive spindle and reduces the particulate contaminants in the memory disk pack area by up to three orders of magnitude. In addition, bearing life in the spindle is found to be doubled due to reduction of operating temperature. The fundamentals of magnetic fluid sealing are presented in terms of magnetic circuit design and physical properties of ferrofluids.
Date: January 1, 1979
Creator: Raj, K.; Stahl, P.; Bottenberg, W.; True, D.; Martis, G. & Zook, C.
Partner: UNT Libraries Government Documents Department

Designing aluminum sealing glasses for manufacturability

Description: Manufacturability issues involved in the development of new sealing glasses include tailoring glass compositions to meet material and component requirements and determining the optimum seal processing parameters. For each of these issues, statistical analysis can be used to shorten the time between concept and product in the development of what is essentially a new manufacturing technology. We use the development of our new family of phosphate-based glasses for aluminum/stainless steel and aluminum/CuBe hermetic sealing, the ALSG family, to illustrate the statistical approach.
Date: December 31, 1993
Creator: Kovacic, L.; Crowder, S. V.; Brow, R. K. & Bencoe, D. N.
Partner: UNT Libraries Government Documents Department

Improved energy sealing capability

Description: In response to the need for tapping national energy resources, an improved high temperature sealing material has been developed through the sponsorship of the Department of Energy. Parker Seal was selected as one of the technology transferees from L'Garde Inc. and has optimized this transferred technology for further improved performance capabilities and acceptable plant processing. This paper summarizes Parker Seal's testing and evaluation efforts on L'Garde's Y267 transferred technology for a new geothermal and stream service material. This new product, Parker's E962-85 is described in this paper.
Date: October 8, 1982
Creator: Barsoumian, Jerry L.
Partner: UNT Libraries Government Documents Department


Description: Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.
Date: November 16, 2007
Creator: Subramanian, K & Kerry Dunn, K
Partner: UNT Libraries Government Documents Department

Niobium Oxide-Metal Based Seals for High Temperature Applications

Description: The present final report describes technical progress made in regards to evaluating niobium oxide/alumina as a high temperature seal material. Fabrication and characterization of specimens comprising niobium oxide and alumina composites of various compositions was performed. The goal was to identify regions where a glass formed. There were no experimental conditions where a glassy phase was unequivocally identified. However, the results led to the formation of an interesting class of fibrous composites which may have applications where high compliance and high toughness are needed. It is clear that vapor phase sintering is an active mass transport mechanism in Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composites (Figure 1), and it may be possible to design porous materials by utilizing vapor phase sintering. The compositions evaluated in the present work are 52, 60, 73, 82 and 95 mol. % Nb{sub 2}O{sub 5} with the remainder Al{sub 2}O{sub 3}. These were chosen so that some eutectic composition was present during cooling, in an attempt to encourage glass formation. However, the presence of large, elongated crystals, both in the slow cool and the quench experiments indicates that the driving force for crystallization is very high. Several joints were formed between high purity alumina with two compositions (60 and 82 mol. %) forming the joint. These were created by grinding and polishing alumina surfaces and stacking them end-to-end with the powdered Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} material in between. Joining was accomplished in air at temperatures between 1400 C and 1450 C. The joints failed during subsequent machining for strength bars, indicating low strength. It may be possible to use the compositions evaluated here as a joint material, but it seems unlikely that a glassy phase could be produced while joining.
Date: August 14, 2006
Creator: Reimanis, Ivar
Partner: UNT Libraries Government Documents Department

Grouting guidelines for Hanford Tanks Initiative cone penetrometer borings

Description: Grouting of an open cone penetrometer (CP) borehole is done to construct a barrier that prevents the vertical migration of fluids and contaminants between geologic units and aquifers intersected by the boring. Whether to grout, the types of grout, and the method of deployment are functions of the site-specific conditions. This report recommends the strategy that should be followed both before and during HTI [Hanford Tanks Initiative] CP deployment to decide specific borehole grouting needs at Hanford SST farms. Topics discussed in this report that bear on this strategy include: Regulatory guidance, hydrogeologic conditions, operational factors, specific CP grouting deployment recommendations.
Date: May 18, 1998
Creator: Iwatate, D.F.
Partner: UNT Libraries Government Documents Department

A review of the available technologies for sealing a potential underground nuclear waste repository at Yucca Mountain, Nevada

Description: The purpose of this report is to assess the availability of technologies to seal underground openings. The technologies are needed to seal the potential high-level radioactive waste repository at Yucca Mountain. Technologies are evaluated for three basic categories of seal components: backfill (general fill and graded fill), bulkheads, and grout curtains. Not only is placement of seal components assessed, but also preconditioning of the placement area and seal component durability. The approach taken was: First, review selected sealing case histories (literature searches and site visits) from the mining, civil, and defense industries; second, determine whether reasonably available technologies to seal the potential repository exist; and finally, identify deficiencies in existing technologies. It is concluded that reasonably available technologies do exist to place backfill, bulkheads, and grout curtains. Technologies also exist to precondition areas where seal components are to be placed. However, if final performance requirements are stringent for these engineered structures, some existing technologies may need to be developed. Deficiencies currently do exist in technologies that demonstrate the long-term durability and performance of seal components. Case histories do not currently exist that demonstrate the placement of seal components in greatly elevated thermal and high-radiation environments and in areas where ground support (rock bolts and concrete liners) has been removed. The as-placed, in situ material properties for sealing materials appropriate to Yucca Mountain are not available.
Date: November 1, 1994
Creator: Fernandez, J. A. & Richardson, A. M.
Partner: UNT Libraries Government Documents Department

Performance of cement-based seal-system components in a waste-disposal environment

Description: A grout based on portland cement, Class F fly ash, and bentonite clay was developed as part of the closure system of shallow subsurface structures for disposal of low-activity radioactive wastes. Heat output, volume change, and compressive strength of the sealing grout were monitored with time, at elevated temperature, and in physical models, to determine if this closure grout could maintain adequate volume stability and other required physical properties in the internal environment of the disposal structure. To determine if contact with an alkaline liquid waste would cause chemical deterioration of the sealing grout, cured specimens were immersed in a liquid waste simulant containing high concentrations of sodium and aluminum salts. After 21 days at 60 C, specimens increased in mass without significant changes in volume. XRD revealed crystallization of sodium aluminum silicate hydrate. The new phase has an XRD pattern similar to the commercial synthetic zeolite Losod. Scanning electron microscopy used with x-ray fluorescence showed that clusters of this phase had formed in grout pores, to increase rout density and decrease its effective porosity. Testing was repeated at 100 C for 5 days using a simulant containing sodium hydroxide and aluminum nitrate and results were similar. Physical and chemical tests indicate acceptable performance of this grout as a seal-system component.
Date: December 31, 1994
Creator: Malone, P.G.; Wakeley, L.D.; Burkes, J.P. & McDaniel, E.W.
Partner: UNT Libraries Government Documents Department

An Investigation of the Integrity of Cemented Casing Seals with Application to Salt Cavern Sealing and Abandonment

Description: This research project was pursued in three key areas. (1) Salt permeability testing under complex stress states; (2) Hydraulic and mechanical integrity investigations of the well casing shoe through benchscale testing; and (3) Geomechanical modeling of the fluid/salt hydraulic and mechanical interaction of a sealed cavern.
Date: April 19, 2001
Creator: Pfeifle, T.W.; Mellegard, K.D.; Skaug, N.T. & Bruno, M.S.
Partner: UNT Libraries Government Documents Department