45 Matching Results

Search Results

Advanced search parameters have been applied.

Ion sources for sealed neutron tubes

Description: Fast and thermal neutron activation analysis with sealed neutron generators has been used to detect oil (oil logging), hazardous waste, fissile material, explosives, and contraband (drugs). Sealed neutron generators, used in the above applications, must be small and portable, have good electrical efficiency and long life. The ion sources used in the sealed neutron tubes require high gas utilization efficiencies or low pressure operation with high ionization efficiencies. In this paper, the authors compare a number of gas ion sources that can be used in sealed neutron tubes. The characteristics of the most popular ion source, the axial Penning discharge will be discussed as part of the zetatron neutron generator. Other sources to be discussed include the SAMIS source and RF ion source.
Date: November 1, 1996
Creator: Burns, E.J.T. & Bischoff, G.C.
Partner: UNT Libraries Government Documents Department

Environmental assessment for amendments to 10 CFR Part 835

Description: This proposed amendment will modify the scope of 10 CFR 835 to explicitly exclude the transportation of radioactive material conducted in conformance with the Department of Transportation regulations, certain activities conducted on foreign soil, add standards for area posting and sealed radioactive source control, and add a removable surface radioactivity value for tritium.
Date: February 1, 1997
Partner: UNT Libraries Government Documents Department

Proposed Californium-252 User Facility for Neutron Science at Oak Ridge National Laboratory

Description: The Radiochemical Engineering Development Center (REDC) at ORNL has petitioned to establish a Californium-252 User Facility for Neutron Science for academic, industrial, and governmental researchers. The REDC Californium Facility (CF) stores the national inventory of sealed {sup 252}Cf neutron source for university and research loans. Within the CF, the {sup 252}Cf storage pool and two uncontaminated hot cells currently in service for the Californium Program will form the physical basis for the User Facility. Relevant applications include dosimetry and experiments for neutron tumor therapy; fast and thermal neutron activation analysis of materials; experimental configurations for prompt gamma neutron activation analysis; neutron shielding and material damage studies; and hardness testing of radiation detectors, cameras, and electronics. A formal User Facility simplifies working arrangements and agreements between US DOE facilities, academia, and commercial interests.
Date: October 1, 1996
Creator: Martin, R.C.; Laxson, R.R. & Knauer, J.B.
Partner: UNT Libraries Government Documents Department

Characterization of Greater-Than-Class C sealed sources. Volume 1, Sealed sources held by specific licensees

Description: Sealed sources are small, relatively high-activity radioactive sources typically encapsulated in a metallic container. The activities can range from less than 1 mCi to over 1,000 Ci. They are used in a variety of industries and are commonly available. Many of the sources will be classified as Greater-Than-Class C low-level radioactive waste (GTCC LLW) for the purpose of waste disposal. The US Department of Energy is responsible for disposing of this class of low-level radioactive waste. To better understand the scope of the GTCC LLW situation regarding sealed sources and to provide data to a model that projects future quantities of GTCC material, data from a comprehensive 1991 US Nuclear Regulatory Commission (NRC) survey and a related 1992 survey of Agreement States were analyzed to estimate the number, volume, and activity of Potential GTCC sealed sources currently available from specific licensees. Potential GTCC sealed sources are sources that exceed the limits stated in 10 CFR 61 when isotope concentrations are averaged over the volume of the capsule. Based on the surveys, the estimated number of existing Potential GTCC sealed sources held by specific licensees is 89,000, with an unpackaged volume of 0.93 m{sup 3} and an activity of 2,300,000 Ci. However, current disposal practices allow concentration averaging over the disposal container, substantially reducing the number of sealed sources which will actually be classified as GTCC LLW.
Date: September 1, 1994
Creator: Harris, G.
Partner: UNT Libraries Government Documents Department

Preparation of Pu{sup 239} sources

Description: The Separations Technology Laboratory has prepared four sources to be used for calibrating a waste assay system (Passive/Active Neutron Assay) in Building 724-8G (Burial Ground). The four sources contain 0.5, 0.1, 0.05, and 0.01 grams Pu{sup 239}, respectively. The sources were prepared using aliquots from a single solution provided by the Quality Control (QC) group of Laboratories Department. The solution contained weapons-grade plutonium dissolved in nitric acid. Final solution acidity was 3M. Coulometry had been used to obtain a total plutonium content per unit volume. The weight percent of the plutonium isotopes present was obtained via mass spectrometry.
Date: August 5, 1988
Creator: Holcomb, H. P.
Partner: UNT Libraries Government Documents Department

Characterization of Greater-Than-Class C sealed sources. Volume 3, Sealed sources held by general licensees

Description: This is the third volume in a series of three volumes characterizing the population of sealed sources that may become greater-than-Class C low-level radioactive waste (GTCC LLW). In this volume, those sources possessed by general licensees are discussed. General-licensed devices may contain sealed sources with significant amounts of radioactive material. However, the devices are designed to be safe to use without special knowledge of radiological safety practices. Devices containing Am-241 or Cm-244 sources are most likely to become GTCC LLW after concentration averaging. This study estimates that there are about 16,000 GTCC devices held by general licensees; 15,000 of these contain Am-241 sources and 1,000 contain Cm-244 sources. Additionally, this study estimates that there are 1,600 GTCC devices sold to general licensees each year. However, due to a lack of available information on general licensees in Agreement States, these estimates are uncertain. This uncertainty is quantified in the low and high case estimates given in this report, which span approximately an order of magnitude.
Date: September 1, 1994
Creator: Harris, G.
Partner: UNT Libraries Government Documents Department

International Data on Radiological Sources

Description: ABSTRACT The mission of radiological dispersal device (RDD) nuclear forensics is to identify the provenance of nuclear and radiological materials used in RDDs and to aid law enforcement in tracking nuclear materials and routes. The application of databases to radiological forensics is to match RDD source material to a source model in the database, provide guidance regarding a possible second device, and aid the FBI by providing a short list of manufacturers and distributors, and ultimately to the last legal owner of the source. The Argonne/Idaho National Laboratory RDD attribution database is a powerful technical tool in radiological forensics. The database (1267 unique vendors) includes all sealed sources and a device registered in the U.S., is complemented by data from the IAEA Catalogue, and is supported by rigorous in-lab characterization of selected sealed sources regarding physical form, radiochemical composition, and age-dating profiles. Close working relationships with global partners in the commercial sealed sources industry provide invaluable technical information and expertise in the development of signature profiles. These profiles are critical to the down-selection of potential candidates in either pre- or post- event RDD attribution. The down-selection process includes a match between an interdicted (or detonated) source and a model in the database linked to one or more manufacturers and distributors.
Date: July 1, 2010
Creator: Finck, Martha & Goldberg, Margaret
Partner: UNT Libraries Government Documents Department

Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

Description: As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ``Applications for the Use of Sealed Sources in Portable Gauging Devices,`` and in NMSs Policy and guidance Directive 2-07, ``Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.`` This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications.
Date: May 1, 1997
Creator: Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H. et al.
Partner: UNT Libraries Government Documents Department

Standard review plan for applications for sealed source and device evaluations and registrations

Description: The purpose of this document is to provide the reviewer of a request for a sealed source or device safety evaluation with the information and materials necessary to make a determination that the product is acceptable for licensing purposes. It provides the reviewer with a listing of the applicable regulations and industry standards, policies affecting evaluation and registration, certain administrative procedures to be followed, and information on how to perform the evaluation and write the registration certificate. Standard review plans are prepared for the guidance of the Office of Nuclear Material Safety and Safeguards staff responsible for the review of a sealed source or device application. This document is made available to the public as part of the Commission`s policy to inform the nuclear industry and the general public of regulatory procedures and policies. Standard review plans are not substitutes for regulatory guides or the Commission`s regulations and compliance with them is not required.
Date: November 1, 1996
Partner: UNT Libraries Government Documents Department


Description: Beginning in the 1950's the federal government, through the Atomic Energy Commission, began providing limited quantities of special nuclear material to industry and research institutions to stimulate advances in nuclear science and technology. By the early 1960s the identified beneficial uses of radioactive material had added Am-241, Cs- 137, CO-60, and Sr-90 to the list of common isotopes which were distributed in significant numbers as high-energy sealed sources for industry, medicine and research. By the mid 1980s many of these sealed radioactive sources were thirty years old and the changing priorities of research and industry had rendered many of them excess. Unfortunately, many of these sources exceeded activity limits established for Low-Level Waste (LLW) disposal and the owners were left with no viable options to rid themselves of unwanted material. In 1985, Congress attempted to address this concern by assigning responsibility for disposal of radioactive material which exceeded the Class-C LLW limits to the US Department of Energy (DOE) in the Low-Level Waste Policy Amendments Act of 1985 (PL 99-240). As with other attempts for disposal facility development however, the years passed and the facilities were not forthcoming. This paper briefly describes the history of government efforts to effect retrieval of these sources and provides projections on availability of retrieval services by Los Alamos National Laboratory (LANL). A summary of eligible materials, points of contact at LANL, and recommended actions by current source owners are included.
Date: September 1, 2000
Creator: PERASON, M. W.; GRIGSBY, C. O. & AL, ET
Partner: UNT Libraries Government Documents Department

Nonactinide Isotopes and Sealed Sources Web Application

Description: The Nonactinide Isotopes and Sealed Sources (NISS) Web Application is a web-based database query and data management tool designed to facilitate the identification and reapplication of radioactive sources throughout the Department of Energy (DOE) complex. It provides search capability to the general Internet community and detailed data management functions to contributing site administrators.
Date: January 1, 2002
Partner: UNT Libraries Government Documents Department

Disposal concepts and characteristics of existing and potential low-waste repositories - 9076

Description: The closure of the Barnwell low-level waste (LLW) disposal facility to non-Atlantic Compact users poses significant problems for organizations seeking to remove waste material from public circulation. Beta-gamma sources such as {sup 137}Cs and {sup 90}Sr in particular create problems because in 36 states no path forward exists for disposal. Furthermore, several other countries are considering disposition of sealed sources in a variety of facilities. Like much of the United States, many of these countries currently have no means of disposal. Consequently, there is a greater tendency for sources to be misplaced or stored in insufficient facilities, resulting in an increased likelihood of unwitting exposure of nearby people to radioactive materials. This paper provides an overview of the various disposal concepts that have been employed or attempted in the United States. From these concepts, a general overview of characteristics necessary for long-term disposal is synthesized.
Date: January 1, 2009
Creator: Johnson, Peter J. & Zarling, John C.
Partner: UNT Libraries Government Documents Department

High Exposure Facility Technical Description

Description: The High Exposure Facility is a collimated high-level gamma irradiator that is located in the basement of the 318 building. It was custom developed by PNNL back in 1982 to meet the needs for high range radiological instrument calibrations and dosimeter irradiations. At the time no commercially available product existed that could create exposure rates up to 20,000 R/h. This document is intended to pass on the design criteria that was employed to create this unique facility, while maintaining compliance with ANSI N543-1974, "General Safety Standard for Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MeV."
Date: February 12, 2008
Creator: Carter, Gregory L.; Stithem, Arthur R.; Murphy, Mark K. & Smith, Alex K.
Partner: UNT Libraries Government Documents Department

Shielding analysis of neuron emitting sealed sources in S100 pipe component OVERPACK/TRUPACT-11 geometries using MCNP transport code and empirical measurements

Description: The purpose of this work was to estimate an upper bound for the dose at the mid-plane on the surface of a S100 Overpack, i.e., a specially designed drum for transuranium (TRU) waste containing shielding and sealed neutron sources. In addition, the dose at the surface and at a distance for a TRUPACT-II Container with 14 S100 Overpack drums was also estimated for the Normal Conditions of Transport (NCT), for Normal Condition of Transport with crushed Overpacks and for accident conditions. The source modeled was a Plutonium-Beryllium source with the Plutonium infinitely dilute in the Beryllium. In the calculations, a source of one curie per drum was modeled. The resulting dose from the calculations may be scaled to reflect multi-curie level sources. When these results are scaled to 28 curies per drum, the limiting payload, the dose rates obtained meet the requirements of the TRUPACT-II Safety Analysis Report.
Date: January 1, 2002
Creator: Perry, R. T. (Robert T.); Brown, T. H. (Thomas H.) & Tompkins, J. A.
Partner: UNT Libraries Government Documents Department

Intrinsic Tamper Indicating Device (TID) Program

Description: The Los Alamos National Laboratory (LANL) Intrinsic Tamper Indicating Device (TID) Program has recently been developed in conjunction with the regular LANL TID Program to assist groups who perform measurements using sealed sources or store difficult-to-measure items. The program was then expanded to include other types of sealed sources and items processed for long-term storage in the Nuclear Material Packaging and Repackaging Program. The Intrinsic TID Program encompasses both Special Nuclear Material (SNM) and Nuclear Material (NM) items that have intrinsic characteristics that would immediately indicate tampering upon visual inspection. Items determined to be intrinsically sealed do not need to be sealed with authorized tamper indicating devices. Under the program, an identified intrinsic item receives the same safeguards credits as other tamper-sealed items already in the TID Program. The major benefits of the Intrinsic TID Program include reducing verification measurements on intrinsically identified inventory items and reducing exposure to operators working in highly irradiated environments. Intrinsic TIDs should be combined with other safeguards requirements, and items should have defensible measurements as well as visual inspections. Several groups at LANL are already implementing the program and providing feedback so that we can tailor it to better meet the customers` needs.
Date: September 1, 1996
Creator: Haag, W.E.
Partner: UNT Libraries Government Documents Department

INEEL special case waste storage and disposal alternatives

Description: Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria.
Date: July 1, 1997
Creator: Larson, L.A.; Bishop, C.W. & Bhatt, R.N.
Partner: UNT Libraries Government Documents Department

Database system for management of health physics and industrial hygiene records.

Description: This paper provides an overview of the Worker Protection System (WPS), a client/server, Windows-based database management system for essential radiological protection and industrial hygiene. Seven operational modules handle records for external dosimetry, bioassay/internal dosimetry, sealed sources, routine radiological surveys, lasers, workplace exposure, and respirators. WPS utilizes the latest hardware and software technologies to provide ready electronic access to a consolidated source of worker protection.
Date: October 5, 1999
Creator: Murdoch, B. T.; Blomquist, J. A.; Cooke, R. H.; Davis, J. T.; Davis, T. M.; Dolecek, E. H. et al.
Partner: UNT Libraries Government Documents Department

Recovery of {sup 241}Am/Be neutron sources, Wooster, Ohio

Description: In August 1997, the Nuclear Regulatory Commission (NRC) submitted to the US Department of Energy (DOE) a partial list of licensed radioactive sealed sources to be recovered under a pilot project initiating Radioactive Source Recovery Program (RSRP) operations. The first of the pilot project recoveries was scheduled for September 1997 at Eastern Well Surveys in Wooster, Ohio, a company with five unwanted sealed sources on the NRC list. The sources were neutron emitters, each containing {sup 241}Am/Be with activities ranging from 2.49 to 3.0 Ci. A prior radiological survey had established that one of these sources, a Gulf Nuclear Model 71-1 containing 3 Ci of {sup 241}Am, was contaminated with {sup 241}Am and might be leaking. The other four sources were obsolete and could no longer be used by Eastern Well Surveys for their intended application in well-logging applications due to NRC decertification of these sources. All of the sources exceeded the limits established for Class C waste under 10 CFR 61.55 and, as a result, are the ultimate responsibility of the DOE under the provisions of PL 99-240. This report describes the cooperative effort between the DOE and NRC to recover the sources and transport them to Los Alamos National Laboratory (LANL) for deactivation under the RSRP. This operation alleviated any potential risk to the public health and safety from the site which might result from the leaking neutron sources or the potential mismanagement of unwanted sources. The on-site recovery occurred on September 23, 1997, and was performed by personnel from LANL and its contractor and was observed by staff from the Region III office of the NRC. All aspects of the recovery were successfully accomplished, and the sources were received at LANL on September 29, 1997. Experience gained during this operation will be used to formulate operational poilicies ...
Date: July 1, 1998
Creator: Tompkins, J.A.; Wannigman, D. & Hatler, V.
Partner: UNT Libraries Government Documents Department

Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

Description: This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.
Date: January 1, 1996
Creator: Haffner, D.R. & Villelgas, A.J.
Partner: UNT Libraries Government Documents Department


Description: Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.
Date: February 27, 2003
Creator: Murray, A. & Abbott, H.
Partner: UNT Libraries Government Documents Department

The Nonactinide Isotope and Sealed Sources Management Group

Description: The Nonactinide Isotope and Sealed Sources Management Group (NISSMG) is sponsored by the Department of Energy (DOE) Office of Environmental Management and managed by Albuquerque Operations Office (DOE/AL) to serve as a complex-wide resource for the management of DOE-owned Nonactinide Isotope and Sealed Source (NISS) materials. NISS materials are defined as including: any isotope in sealed sources or standards; and isotopes, regardless of form, with atomic number less than 90. The NISSMG assists DOE sites with the storage, reuse, disposition, transportation, and processing of these materials. The NISSMG has focused its efforts to date at DOE closure sites due to the immediacy of their problems. Recently, these efforts were broadened to include closure facilities at non-closure sites. Eventually, the NISSMG plans to make its resources available to all DOE sites. This paper documents the lessons learned in managing NISS materials at DOE sites to date.
Date: February 27, 2002
Creator: Low, J. L.; Polansky, G. F. & Parks, D. L.
Partner: UNT Libraries Government Documents Department

Radium Disposition Options for the Department of Energy

Description: The Department of Energy (DOE) has developed plans to disposition its excess nuclear materials, including radium-containing materials. Within DOE, there is no significant demand for radium at this time. However, DOE is exploring reuse options, including uses that may not exist at this time. The Nonactinide Isotopes and Sealed Sources Management Group (NISSMG) has identified 654 radium-containing items, and concluded that there are no remaining radium items that do not have a pathway to disposition. Unfortunately, most of these pathways end with disposal, whereas reuse would be preferable. DOE has a number of closure sites that must remove the radium at their sites as part of their closure activities. NISSMG suggests preserving the larger radium sources that can easily be manufactured into targets for future reuse, and disposing the other items. As alternatives to disposal, there exist reuse options for radium, especially in nuclear medicine. These options were identified by NISSMG. The NISSMG recommends that DOE set up receiver sites to store these radium materials until reuse options become available. The NISSMG recommends two pathways for dispositioning radium sources, depending on the activity and volume of material. Low activity radium sources can be managed as low level radioactive waste per DOE Order 5820.2A. Higher activity radium sources are more appropriate for reuse in nuclear medicine applications and other applications.
Date: February 26, 2002
Creator: Parks, D. L.; Thiel, E. C. & Seidel, B. R.
Partner: UNT Libraries Government Documents Department

Sealed source and device design safety testing: Technical report on the findings of task 4 -- Investigation of failed Nitinol brachytherapy wire. Volume 2

Description: This report covers an investigation of the nature and cause of failure in Nitinol brachytherapy sourcewires. The investigation was initiated after two clinical incidents in which sourcewires failed during or immediately after a treatment. The investigation determined that the two clinical Nitinol sourcewires failed in a brittle manner, which is atypical for Nitinol. There were no material anomalies or subcritical flaws to explain the brittle failures. The bend tests also demonstrated that neither moist environment, radiation, nor low-temperature structural transformation was a likely root cause of the failures. However, degradation of the PTFE was consistently evident, and those sourcewires shipped or stored with PTFE sleeves consistently failed in laboratory bend tests. On the basis of the results of this study, it was concluded that the root cause of the in-service failures of the sourcewires was environmentally induced embrittlement due to the breakdown of the PTFE protective sleeves in the presence of the high-radiation field and subsequent reaction or interaction of the breakdown products with the Nitinol alloy.
Date: March 1, 1996
Creator: Benac, D.J. & Burghard, H.C.
Partner: UNT Libraries Government Documents Department