171 Matching Results

Search Results

Advanced search parameters have been applied.

Berkeley UXO Discriminator (BUD)

Description: The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve. Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.
Date: January 1, 2007
Creator: Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank & Becker, Alex
Partner: UNT Libraries Government Documents Department

Discrimination Report: ESTCP UXO Discrimination Study, ESTCPProject #MM-0437

Description: The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation require demonstration to regulators of not only individual technologies, but of an entire decision making process. This discrimination study was be the first phase in what is expected to be a continuing effort that will span several years.
Date: December 21, 2007
Creator: Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank & Becker, Alex
Partner: UNT Libraries Government Documents Department

INEEL Lead Recycling in a Moratorium Environment

Description: Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.
Date: February 26, 2003
Creator: Kooda, K. E.; Galloway, K.; McCray, C. W. & Aitken, D. W.
Partner: UNT Libraries Government Documents Department

Demonstration Report: ESTCP UXO Discrimination Study ESTCP PROJECT # MM-0838

Description: In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at real UXO sites under real world conditions. Any attempt to declare detected anomalies to be harmless and requiring no further investigation will require demonstration to regulators of not only individual technologies, but of an entire decision making process. This characterization study was be the second phase in what is expected to be a continuing effort that will span several years. The FY06 Defense Appropriation contained funding for the 'Development of Advanced, Sophisticated, Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program (ESTCP). ESTCP responded by conducting a UXO Discrimination Study at the former Camp Sibert, AL. The results of this first demonstration were very encouraging. Although conditions were favorable at this site, a single target of interest (4.2-in mortar) and benign topography and geology, all of the classification approaches demonstrated were able to correctly identify a sizable fraction of the anomalies as arising from non-hazardous items that could be safely left in the ground. To build upon the success of the first phase of this study, ESTCP sponsored a ...
Date: February 15, 2010
Creator: Gasperikova, Erika
Partner: UNT Libraries Government Documents Department

Discrimination Report ESTCP Project #MM-0437

Description: The FY06 Defense Appropriation contains funding for the 'Development of Advanced, Sophisticated, and Discrimination Technologies for UXO Cleanup' in the Environmental Security Technology Certification Program. In 2003, the Defense Science Board observed: 'The...problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed. The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs'. Significant progress has been made in discrimination technology. To date, testing of these approaches has been primarily limited to test sites with only limited application at live sites. Acceptance of discrimination technologies requires demonstration of system capabilities at UXO sites under real world conditions. FE Warren Air Force Base (AFB) in Cheyenne, WY is one such site. The demonstration objective was to determine the discrimination capabilities, cost and reliability of the Berkeley UXO Discriminator (BUD) in discrimination of UXO from scrap metal in real life conditions. Lawrence Berkeley National Laboratory performed a detection and discrimination survey of the Priority 1 area ({approx}5 acres) of the FE Warren AFB. The data included a system characterization with the emplaced calibration items and targets in the Geophysical Prove Out (GPO) area.
Date: October 1, 2008
Creator: Gasperikova, Erika
Partner: UNT Libraries Government Documents Department

Evaluation of Proposed New LLW Disposal Activity Disposal of No Dose/Low Dose Scrap Metal in Slit Trenches

Description: Activated metal is a special waste that requires evaluation for disposal. Contaminants in the activated metal will leach more slowly than will contaminants in generic waste. There is an inventory of activated scrap metal in the 105-L Disassembly Basin. Approximately 1,600 ft3 of the material is characterized as ''No Dose/Low Dose'' and consists mainly of activated aluminum and aluminum alloy pieces and parts and no stainless steel with a dose rate less than 200 mR per hr. Contaminants in the activated metal will leach more slowly than will contaminants in generic waste. The change in the leach rate will affect analyses for the groundwater pathway and intruder scenarios. For this evaluation, the slower leach rate from the activated metal waste will be neglected for the groundwater pathway, which is conservative because the higher leach rate used tends to produce higher groundwater concentrations and lower inventory limits. For this evaluation, the leach rate was set to zero for intruder scenarios, which is conservative for the inadvertent intruder because a slower leach rate will result in higher levels of radionuclides in the waste zone. The evaluation concludes that the existing limits are applicable to the disposal of No Dose/Low Dose activated scrap metal in slit trenches so that a Special Analysis is not needed to dispose of this waste stream.
Date: February 11, 2004
Creator: Cook, JR
Partner: UNT Libraries Government Documents Department

Melt processing of radioactive waste: A technical overview

Description: Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.
Date: April 1, 1997
Creator: Schlienger, M.E.; Buckentin, J.M. & Damkroger, B.K.
Partner: UNT Libraries Government Documents Department

Simulating beryllium electrorefining with AspenPlus{copyright}

Description: Beryllium is a lightweight, high strength metal with excellent thermal properties. It is a high cost material that has applications in electronics, the space program, and the defense industry. Beryllium is irreplaceable in several defense applications and therefore the US government maintains a reserve supply of several grades of the metal. However, the current defense industry (the largest metallic beryllium user) use has dwindled to the point that the only metallic beryllium producer in the US, Brush Wellman Inc., continually evaluates the profitability of continued production. The production dilemma has been compounded by health concerns associated with the generation of beryllium fines during production. An electrorefining method, previously developed, shows promise for recycling low purity beryllium scraps and produces a high grade material. Recycling and purification can reduce costs and waste disposal problems and increase the beryllium reserves in the event that Brush Wellman discontinues production. In this paper, the authors demonstrate how to use a commercially available process simulator for improving a process to electrorefine both scrap and low purity beryllium into a high purity product.
Date: December 1, 1998
Creator: Polston, C.E.; Parkinson, W.J.; Abeln, S.P.; Wantuck, P.J. & Corle, R.R.
Partner: UNT Libraries Government Documents Department

Stainless Steel RSM Beneficial Reuse technical feasibility to business reality

Description: The Stainless Steel Beneficial Reuse Program began in 1994 as a demonstration funded by the DOE Office of Science and Technology. The purpose was to assess the practicality of stainless steel radioactive scrap metal (RSM) recycle. Technical feasibility has been demonstrated through the production of a number of products made from recycled RSM. A solid business foundation is yet to be achieved. However, a business environment is beginning to develop as multiple markets and applications for RSM are surfacing around the Complex. The criteria for a successful business reality includes: - affordable programs, - a continuing production base from which to expand, - real products needs, - adequate RSM supply, and - a multi-year program This program currently sponsored by SRS and DOE-ORO to fabricate Defense Waste Processing Facility (DWPF) canisters from RSM provides an activity that satisfies these criteria. The program status is discussed. A comparison of the cost of DWPF canisters fabricated from recycled RSM and virgin metal is presented. The comparison is a function of several factors: disposal costs, the fabrication cost of virgin metal canisters, the fabrication cost of recycled RSM canisters, free release decontamination costs, and the cost to accumulate the RSM. These variables are analyzed and the relationship established to show the break-even point for various values of each parameter.
Date: August 1, 1997
Creator: Boettinger, W.L. & Mishra, G.
Partner: UNT Libraries Government Documents Department

DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

Description: The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and because its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies (when the sources were shipped for disposal). The decommissioning project included packaging, transport and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual doses experienced during the work were lower than anticipated. Because the sources were sealed, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris. However, disposal of the pool water involved addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant.
Date: February 24, 2001
Creator: BOWERMAN,B.; SULLIVAN,P.T. & MOORE,D.
Partner: UNT Libraries Government Documents Department

U.S. Department of Energy National Center of Excellence for Metals Recycle

Description: The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-l2 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer programs, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, provide pollution prevention information and documentation, and produce independent government estimates. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrapyard, and disposition of PCB-contaminated drums.
Date: May 1, 1998
Creator: Adams, V.; Bennett, M. & Bishop, L.
Partner: UNT Libraries Government Documents Department

U.S. Department of Energy National Center of Excellence for Metals Recycle

Description: The US Department of Energy (DOE) National Center of Excellence for Metals Recycle has recently been established. The vision of this new program is to develop a DOE culture that promotes pollution prevention by considering the recycle and reuse of metal as the first and primary disposition option and burial as a last option. The Center of Excellence takes the approach that unrestricted release of metal is the first priority because it is the most cost-effective disposition pathway. Where this is not appropriate, restricted release, beneficial reuse, and stockpile of ingots are considered. The Center has gotten off to a fast start. Current recycling activities include the sale of 40,000 tons of scrap metal from the East Tennessee Technology Park (formerly K-25 Plant) K-770 scrap yard, K-1064 surplus equipment and machinery, 7,000 PCB-contaminated drums, 12,000 tons of metal from the Y-12 scrap yard, and 1,000 metal pallets. In addition, the Center of Excellence is developing a toolbox for project teams that will contain a number of specific tools to facilitate metals recycle. This Internet-based toolbox will include primers, computer software, and case studies designed to help sites to perform life cycle analysis, perform ALARA (As Low As is Reasonably Achievable) analysis for radiation exposures, produce pollution prevention information and documentation, manage their materials inventory, produce independent government estimates, and implement sale/service contracts. The use of these tools is described for two current activities: disposition of scrap metal in the Y-12 scrap yard, and disposition of PCB-contaminated drums. Members of the Center look forward to working with all DOE sites, regulatory authorities, the private sector, and other stakeholders to achieve the metals recycle goals.
Date: June 1, 1998
Creator: Adams, V.; Bennett, M. & Bishop, L.
Partner: UNT Libraries Government Documents Department

Evaluation of the electrorefining technique for the processing of radioactive scrap metals

Description: This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.
Date: October 1, 1993
Creator: Kessinger, G.F.
Partner: UNT Libraries Government Documents Department

SRS vitrification studies in support of the U.S. program for disposition of excess plutonium

Description: Many thousands of nuclear weapons are being retired in the U.S. and Russian as a result of nuclear disarmament activities. These efforts are expected to produce a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition to this inventory, the U.S. Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russian is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the U.S. and Russian present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a safe, durable, accountable and proliferation-resistant form. As a result of decades to experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include mobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. An overall strategy to vitrify many different types of Pu will be already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a consistent and common borosilicate glass composition for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.
Date: September 1, 1995
Creator: Wicks, G.G.; McKibben, J.M.; Plodinec, M.J. & Ramsey, W.G.
Partner: UNT Libraries Government Documents Department

Pilot study dismantlement of 20 lead-lined shipping casks

Description: This report describes a pilot study conducted at the INEL to dismantle lead-lined casks and shielding devices, separate the radiologically contaminated and hazardous materials, and recycle resultant scrap lead. The facility areas where the work was performed, dismantlement methods, and process equipment are described. Issues and results associated with recycling the lead as a free-released scrap metal are presented and discussed. Data and results from the pilot study are summarized and presented. The study concluded that cask dismantlement at the INEL can be performed as a legitimate recycling activity for scrap lead. Ninety-one percent of the lead recovered passed free-release criteria. The value of the 50,375 lb of recovered lead is approximately $0.45/lb. Resultant waste streams can be satisfactorily treated and disposed. Only very low levels of bulk radiological contamination (47 picocuries/gram of 137 Cs and 3.2 picocuries/gram of {sup 6O}Co) were detected in the lead rejected for free release.
Date: August 1, 1995
Creator: Thurmond, S.M.
Partner: UNT Libraries Government Documents Department

Test Report for Cricket Radiation Detection System Used In EPA Port Installations

Description: Oak Ridge National Laboratory conducted field radiological measurements at two port locations at the request of the Environmental Protection Agency (EPA). The radiological measurements were performed on five radiation detection systems at the port of Darrow, Louisiana and three systems at the port of Charleston, South Carolina. Darrow was visited on January 20-23, 2004 and Charleston on May 25, 2004. All tested systems are designed to detect radioactive material that might be present in scrap metals as the scrap is being unloaded from ships. All eight systems are commercially known as the Cricket and manufactured by RAD/COMM Systems. Each radiation detection system consists of a detector with two channels and a wireless transmitter, both mounted on the grapple, and a controller located in the crane cab. The cranes at both locations are operated by the Cooper T. Smith Company. The purpose of the radiological measurements was to evaluate the performance of the radiation detection systems in terms of their ability to detect elevated radiation levels, and to develop a routine testing method for all EPA Cricket systems.
Date: August 11, 2004
Creator: Shourbaji, AA
Partner: UNT Libraries Government Documents Department

Recycling zinc by dezincing steel scrap

Description: In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the increased cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The designed ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana has designed in a continuous process mode 900 tonnes of loose stamping plant scrap; this scrap typically has residual zinc below 0.1% and sodium dragout below 0.001%. This paper reviews pilot plant performance and the economics of recycling galvanized steel and recovering zinc using a caustic process.
Date: June 1, 1995
Creator: Dudek, F.J.; Daniels, E.J. & Morgan, W.A.
Partner: UNT Libraries Government Documents Department

RAD/COMM Cricket Test Report

Description: The Environmental Effects Laboratory of the Engineering Science and Technology Division of Oak Ridge National Laboratory performed a series of tests to further evaluate and characterize the radiological response of a ''Cricket'' radiation detection system. The Cricket, manufactured by Rad/Comm Systems Corporation of Ontario, Canada, is designed to detect radioactive material that may be contained in scrap metal. The Cricket's detection unit is designed to be mounted to the base of a grappler, allowing it to monitor material while the material is being held by the grappler tines. The Cricket was tested for background stability, energy response, spherical response, surface uniformity, angular dependence, and alarm actuation. Some of these tests were repeated from a prior test of a Cricket at the Environmental Effects Laboratory as reported in ORNL/TM-2002/94. Routine environmental tests--normal temperature and relatively humidity--were also performed as part of this testing process. Overall, the Cricket performed well during the testing process. The design of the instrument and the inherent photon energy of the radionuclides had some affect on portions of the tests but do not detract from the value-added benefits of the Cricket's detection capabilities.
Date: August 28, 2003
Creator: Chiaro, PJ
Partner: UNT Libraries Government Documents Department

Framework for managing wastes from oil and gas exploration and production (E&P) sites.

Description: Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.
Date: September 15, 2007
Creator: Veil, J. A.; Puder, M. G. & Division, Environmental Science
Partner: UNT Libraries Government Documents Department

End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

Description: Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation with the Vehicle Recycling Partnership (VRP) and the American Plastics Council (APC), is working to develop technology for recycling materials from shredder ...
Date: March 21, 2007
Creator: Jody, B. J.; Daniels, E. J. & Systems, Energy
Partner: UNT Libraries Government Documents Department

UXO detection and identification based on intrinsic target polarizabilities: A case history

Description: Electromagnetic induction data parameterized in time dependent object intrinsic polarizabilities allow discrimination of unexploded ordnance (UXO) from false targets (scrap metal). Data from a cart-mounted system designed for discrimination of UXO with 20 mm to 155 mm diameters are used. Discrimination of UXO from irregular scrap metal is based on the principal dipole polarizabilities of a target. A near-intact UXO displays a single major polarizability coincident with the long axis of the object and two equal smaller transverse polarizabilities, whereas metal scraps have distinct polarizability signatures that rarely mimic those of elongated symmetric bodies. Based on a training data set of known targets, object identification was made by estimating the probability that an object is a single UXO. Our test survey took place on a military base where both 4.2-inch mortar shells and scrap metal were present. The results show that we detected and discriminated correctly all 4.2-inch mortars, and in that process we added 7%, and 17%, respectively, of dry holes (digging scrap) to the total number of excavations in two different survey modes. We also demonstrated a mode of operation that might be more cost effective than the current practice.
Date: July 15, 2008
Creator: Gasperikova, E.; Smith, J.T.; Morrison, H.F.; Becker, A. & Kappler, K.
Partner: UNT Libraries Government Documents Department

Demonstration Report: Handheld UXO Discriminator, SERDP No. MR-1667

Description: In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' In keeping with these remarks and with prior funding (UX-1225, MM-0437, and MM-0838), the LBNL group has successfully designed and built the cart-mounted Berkeley UXO Discriminator (BUD) and demonstrated its performance at various test sites (cf. Gasperikova et al., 2007, 2008, and 2009). Because hand-held systems have the advantage of being lightweight, compact, portable, and deployable under most site conditions, they are particularly useful in areas of dense vegetation or challenging terrain. In heavily wooded areas or areas with steep or uneven terrain, hand-held sensors may be the only suitable device for UXO detection and discrimination because it can be carried through spaces that the operator could walk through or at least approach. Furthermore, it is desirable to find and characterize a metallic object without the need to accurately locate the sensors at multiple positions around the target. The ideal system would thus locate and characterize the target from a single position of the sensor and indicate to the operator where to flag the target for subsequent study. Based on these considerations, we designed and built a sensor package in a shape of a 14-in (0.35 m) cube. This hand-held prototype incorporates the key features of the cart-mounted system - (a) three orthogonal transmitters and ten pairs of receivers, and ...
Date: September 1, 2010
Creator: Gasperikova, E.
Partner: UNT Libraries Government Documents Department

Dezincing Technology

Description: Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.
Date: August 1, 1997
Creator: Dudek, F.J.; Daniels, E.J. & Morgan, W.A.
Partner: UNT Libraries Government Documents Department