617 Matching Results

Search Results

Advanced search parameters have been applied.

Technology and Uses of Silica and Sand

Description: Report issued by the Bureau of Mines over studies conducted on the production and uses of silica. Forms and different uses for silica are discussed. This report includes tables, illustrations, and photographs.
Date: 1927
Creator: Weigel, W. M.
Partner: UNT Libraries Government Documents Department

Bearing strength of some sand-cast magnesium alloys

Description: Report presenting testing to determine the bearing strength characteristics of some magnesium-alloy sand castings and the relation between those and more commonly determined tensile properties. The primary sand-cast magnesium alloys of interest for aircraft design are AM403, AM260, and AM265. Results of all of the tension, compression, and shear tests are provided in tables.
Date: February 1947
Creator: Moore, R. L.
Partner: UNT Libraries Government Documents Department

Effects of Aging Quartz Sand and Hanford Site Sediment with Sodium Hydroxide on Radionuclide Sorption Coefficients and Sediment Physical and Hydrologic Properties: Final Report for Subtask 2a

Description: Column and batch experiments were conducted in fiscal year 1998 at Pacific Northwest National Laboratory to evaluate the effect of varying concentrations of NaOH on the sorptive, physical, and hydraulic properties of two media, a quartz sand and a composite subsurface sediment from the 200-East Area of the Hanford Site. The NaOH solutions were used as a simplified effluent from a low-activity glass waste form. These experiments were conducted over a limited (O-to 10-month) contact time, with respect to the 10,000-to 100,000-year scenarios described in the Immobilized Low-Activity Waste- Performance Assessment (ILAW-PA). Wheq these two solids were put in contact with the NaOH solutions, dissolution was evident by a substantial increase in dissolved Si concentrations in the leachates. Incremental increases in NaOH con- centrations, resulted in corresponding increases in Si concentrations. A number of physical and hydraulic properties also changed as the NaOH concentrations were changed. It was observed that quartz sand was less reactive than the composite sediment. Further, moisture- retention measurements were made on the quartz sand and composite sedimen$ which showed that the NaOH-treated solids retained more water than the non-NaOH-treated solids. Because the other chemical, physical, and hydraulic measurements did not change dramatically after the high-NaOH treatments, the greater moisture retention of the high-NaOH treatments was attributed to a "salt effect" and not to the formation of small particles during the dissolution (weathering). The distribution coefficients (IQ) for Cs and Sr were measured on the NaOH-treated sediments, with decreases from -3,000 to 1,000 and 1,300 to 300 mL/g noted, respectively, at the 0.01-to 1.O-M NaOH levels. There was no apparent trend for the Sr & values with contact time. The lack of such a trend sug- gests that dissolution of sediment particles is not controlling the drop in IQ rather, it is the competition of the ...
Date: December 4, 1998
Creator: Kaplan, DI; Ritter, JC & Parker, KE
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Sand Dunes Wilderness Study Area, Sweetwater County, Wyoming

Description: From summary: In this report the area studied is referred to as the "wilderness study area" or the "study area". Investigations of mineral occurrences in and near the wilderness study area during 1984 and 1985 indicated high mineral resource potential for undiscovered deposits of coal, moderate potential of oil shale and natural gas, low potential for oil, and identified resources of claystone, shale, and sand.
Date: 1987
Creator: Merewether, E. A.; Kulik, D. M. & Ryan, George S.
Partner: UNT Libraries Government Documents Department

Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

Description: This document reports progress of this research effort in identifying possible relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. Based on a critical review of the available literature, a better understanding of the main weaknesses of the current state of the art of modeling and simulation for tight sand reservoirs has been reached. Progress has been made in the development and implementation of a simple reservoir simulator that is still able to overcome some of the deficiencies detected. The simulator will be used to quantify the impact of microscopic phenomena in the macroscopic behavior of tight sand gas reservoirs. Phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization are being considered as part of this study. To date, the adequate modeling of gas slippage in porous media has been determined to be of great relevance in order to explain unexpected fluid flow behavior in tight sand reservoirs.
Date: June 30, 2005
Creator: Bravo, Maria Cecilia & Gurfinkel, Mariano
Partner: UNT Libraries Government Documents Department


Description: Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.
Date: April 2, 2006
Creator: Conner, Michael G. & Blesener, Jeffrey A.
Partner: UNT Libraries Government Documents Department

Sand Production Modeling Using Superquadric Discrete Elements and Coupling of Fluid Flow and Particle Motion

Description: Techniques for modeling oil well sand production have been developed using the formulations for superquadric discrete elements and Darcy fluid flow. Discrete element models are generated using the new technique of particle cloning. Discrete element sources and sinks allow simulation of sand production from the initial state through the transition to an equilibrium state where particles are created and removed at the same rate.
Date: February 10, 1999
Creator: Preece, D. S. & Perkins, E. D.
Partner: UNT Libraries Government Documents Department

Canyon dissolution of sand, slag, and crucible residues

Description: An alternative to the FB-Line scrap recovery dissolver was desired for the dissolution of sand, slag, and crucible (SS{ampersand}C) residues from the plutonium reduction process due to the potential generation of hydrogen gas concentrations above the lower flammability limit. To address this concern, a flowsheet was developed for the F-Canyon dissolvers. The dissolvers are continually purged with nominally 33 SCFM of air; therefore the generation of flammable gas concentrations should not be a concern. Following removal of crucible fragments, small batches of the remaining sand fines or slag chunks containing less than approximately 350 grams of plutonium can be dissolved using the center insert in each of the four annular dissolver ports to address nuclear criticality safety concerns. Complete dissolution of the sand fines and slag chunks was achieved in laboratory experiments by heating between 75 and 85 degrees Celsius in a 9.3M nitric acid/0.013M (hydrogen) fluoride solution. Under these conditions, the sand and slag samples dissolved between 1 and 3 hours. Complete dissolution of plutonium and calcium fluorides in the slag required adjusting the dissolver solution to 7.5 wt% aluminum nitrate nonahydrate (ANN). Once ANN was added to a dissolver solution, further dissolution of any plutonium oxide (PuO2) in successive charges was not practical due to complexation of the fluoride by aluminum. During the laboratory experiments, well mixed solutions were necessary to achieve rapid dissolution rates. When agitation was not provided, sand fines dissolved very slowly. Measurement of the hydrogen gas generation rate during dissolution of slag samples was used to estimate the amount of metal in the chunks. Depending upon the yield of the reduction, the values ranged between approximately 1 (good yield) and 20% (poor yield). Aging of the slag will reduce the potential for hydrogen generation as calcium metal oxidizes over time. The potential for excessive ...
Date: December 1, 1997
Creator: Rudisill, T.S.; Gray, J.H.; Karraker, D.G. & Chandler, G.T.
Partner: UNT Libraries Government Documents Department

Elastic properties of sand-peat moss mixtures from ultrasonic measurements

Description: Effective remediation of an environmental site requires extensive knowledge of the geologic setting, as well as the amount and distribution of contaminants. Seismic investigations provide a means to examine the subsurface with minimum disturbance, Laboratory measurements are needed to interpret field data. In this experiment, laboratory tests were performed to characterize manufactured soil samples in terms of their elastic properties. The soil samples consisted of small (mass) percentages (1 to 20 percent) of peat moss mixed with pure quartz sand. Sand was chosen as the major component because its elastic properties are well known except at the lowest pressures. The ultrasonic pulse transmission technique was used to collect elastic wave velocity data. These data were analyzed and mathematically processed to calculate the other elastic properties such as the modulus of elasticity. This experiment demonstrates that seismic data are affected by the amount~of peat moss added to pure sand samples. Elastic wave velocities, velocity gradients, and elastic moduli vary with pressure and peat moss amounts. In particular, ultrasonic response changes dramatically when pore space fills with peat. With some further investigation, the information gathered in this experiment could be applied to seismic field research.
Date: September 2, 1998
Creator: Trombino, C N
Partner: UNT Libraries Government Documents Department

Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III

Description: The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.
Date: April 4, 2001
Creator: Pacific Operators Offshore, Inc.
Partner: UNT Libraries Government Documents Department

Flowsheet modifications for dissolution of sand, slag, and crucible residues in the F-canyon dissolvers

Description: An initial flowsheet for the dissolution of sand, slag, and crucible (SS{ampersand}C) was developed for the F- Canyon dissolvers as an alternative to dissolution in FB-Line. In that flowsheet, the sand fines were separated from the slag chunks and crucible fragments. Those two SS{ampersand}C streams were packaged separately in mild-steel cans for dissolution in the 6.4D dissolver. Nuclear safety constraints limited the dissolver charge to approximately 350 grams of plutonium in two of the three wells of the dissolver insert and required 0.23M (molar) boron as a soluble neutron poison in the 9.3M nitric acid/0.013M fluoride dissolver solution. During the first dissolution of SS{ampersand}C fines, it became apparent that a significant amount of the plutonium charged to the 6.4D dissolver did not dissolve in the time predicted by previous laboratory experiments. The extended dissolution time was attributed to fluoride complexation by boron. An extensive research and development (R{ampersand}D) program was initiated to investigate the dissolution chemistry and the physical configuration of the dissolver insert to understand what flowsheet modifications were needed to achieve a viable dissolution process.
Date: December 1, 1997
Creator: Rudisill, T.S.; Karraker, D.G. & Graham, F.R.
Partner: UNT Libraries Government Documents Department

Nile Born

Description: Sculpture of a ruler sized brown hand carved piece with a wide to narrow rounded edge.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: 1984~
Creator: Mendieta, Ana
Partner: UNT College of Visual Arts + Design

Billiard Table No.1

Description: A still life painting of a billiard table and a potted plant.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: 1944
Creator: Braque, Georges
Partner: UNT College of Visual Arts + Design

Bird and its Nest

Description: A multimedia painting of a bird and its nest.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: 1955
Creator: Braque, Georges
Partner: UNT College of Visual Arts + Design