332 Matching Results

Search Results

Advanced search parameters have been applied.

Determination of Stress-Rupture Parameters for Four Heat-Resisting Alloys

Description: Stress-rupture data for four heat-resisting alloys are analyzed according to equations of the theory of rate processes. A method for determining the four parameters of structure and composition is demonstrated and the four parameters are determined for each of the alloys: forged S816, cast S816, cast S590, and cast Vitallium. It is concluded that parameters can be determined for an alloy provided sufficient reliable experimental data are available.
Date: August 25, 1947
Creator: Lidman, William G.
Partner: UNT Libraries Government Documents Department


Description: We have developed a forward modeling technique to retrieve rupture characteristics of small earthquakes (3<M<5), including rupture propagation direction, fault dimension, and rupture speed.
Date: September 30, 2007
Creator: Helmberger, Donald V.; Tromp, Jeroen & Rodgers, Arthur J.
Partner: UNT Libraries Government Documents Department

Validation of a ground motion synthesis and prediction methodology for the 1988, M=6.0, Saguenay Earthquake

Description: We model the 1988, M=6.0, Saguenay earthquake. We utilize an approach that has been developed to predict strong ground motion. this approach involves developing a set of rupture scenarios based upon bounds on rupture parameters. rupture parameters include rupture geometry, hypocenter, rupture roughness, rupture velocity, healing velocity (rise times), slip distribution, asperity size and location, and slip vector. Scenario here refers to specific values of these parameters for an hypothesized earthquake. Synthetic strong ground motion are then generated for each rupture scenario. A sufficient number of scenarios are run to span the variability in strong ground motion due to the source uncertainties. By having a suite of rupture scenarios of hazardous earthquakes for a fixed magnitude and identifying the hazard to the site from the one standard deviation value of engineering parameters we have introduced a probabilistic component to the deterministic hazard calculation, For this study we developed bounds on rupture scenarios from previous research on this earthquake. The time history closest to the observed ground motion was selected as a model for the Saguenay earthquake.
Date: January 1, 1998
Creator: Hutchings, L.; Jarpe, S.; Kasameyer, P. & Foxall, W.
Partner: UNT Libraries Government Documents Department

Chemical and Photochemical Reactions of Thioctic Acid and RelatedDisulfides

Description: The carbon cycle of photosynthesis is briefly reviewed in its entirety and the experiments involving it which led to the implication of disulfide rupture in photosynthesis are indicated. A review of the organic, physical and photochemistry of disulfides, with particular reference to the five-membered disulfide rings as they appear in thioctic acid, is given.
Date: June 10, 1954
Creator: Calvin, Melvin
Partner: UNT Libraries Government Documents Department

D-Zero Cryostat Supplemental Rupture Disc

Description: The common relief and rupture disc vent line requires a double disc assembly with vented interspace for accurate disc burst pressures. The first disc must take pump and purge vacuum loading, but be set to operate at 110% of the MAWP, 18.3 psig (ASME code). The available solution is 18.3 psig with a burst tolerance of +/- psig. The interspace should be locally vented by a flow limiting vent valve to decouple the vent line backpressure from the vessel rupture disc. The second disc must take the worst case vent line backpressure, the steady state value found in D-Zero engineering note 3740.000-EN-63 with all three cryostats simultaneously venting at the fire condition into the 4-inch x 6-inch and 6-inch x 8-inch sections. This value is less than 2 psid. The maximum rupture value for the second disc must be less than the minimum rupture value for the first disc less 2 psid i.e. &lt; 16.3.
Date: August 3, 1987
Creator: Mulholland, G. T.
Partner: UNT Libraries Government Documents Department

Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vesselthat is Cooled by Liquid Hydrogen in Film Boiling

Description: This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels.
Date: May 7, 2004
Creator: Yang, S.Q.; Green, M.A. & Lau, W.
Partner: UNT Libraries Government Documents Department


Description: This project seeks to compute ground motions for large (M&gt;6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (&lt; 1 Hz).
Date: January 9, 2008
Creator: Rodgers, A & Xie, X
Partner: UNT Libraries Government Documents Department

Review of the geological and structural setting near the site of the proposed Transuranic Waste Facility (TRUWF) Technical Area 52 (TA-52), Los Alamos National Laboratory

Description: Because of Los Alamos National Laboratory’s proximal location to active geologic structures, assessment of seismic hazards, including the potential for seismic surface rupture, must occur before construction of any facilities housing nuclear or other hazardous materials. A transuranic waste facility (TRUWF) planned for construction at Technical Area 52 (TA-52) provides the impetus for this report. Although no single seismic hazards field investigation has focused specifically on TA-52, numerous studies at technical areas surrounding TA-52 have shown no significant, laterally continuous faults exhibiting activity in the last 10 ka within 3,000 ft of the proposed facility. A site-specific field study at the footprint of the proposed TRUWF would not yield further high-precision data on possible Holocene faulting at the site because post-Bandelier Tuff sediments are lacking and the shallowest subunit contacts of the Bandelier Tuff are gradational. Given the distal location of the proposed TRUWF to any mapped structures with demonstrable Holocene displacement, surface rupture potential appears minimal at TA-52.
Date: October 1, 2007
Creator: Schultz-Fellenz, Emily S. & Gardner, Jamie N.
Partner: UNT Libraries Government Documents Department

Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.

Description: Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.
Date: September 1, 2010
Creator: Lechman, Jeremy B. & Takato, Yoichi (State University of New York at Buffalo, Buffalo, NY)
Partner: UNT Libraries Government Documents Department

A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

Description: We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M &lt; 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this magnitude earthquake in the particular source zone, thereby ...
Date: August 6, 2004
Creator: Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W et al.
Partner: UNT Libraries Government Documents Department

Strength of Multiple Parallel Biological Bonds

Description: Multivalent interactions play a critical role in a variety of biological processes on both molecular and cellular levels. We have used molecular force spectroscopy to investigate the strength of multiple parallel peptide-antibody bonds using a system that allowed us to determine the rupture forces and the number of ruptured bonds independently. In our experiments the interacting molecules were attached to the surfaces of the probe and sample of the atomic force microscope with flexible polymer tethers, and unique mechanical signature of the tethers determined the number of ruptured bonds. We show that the rupture forces increase with the number of interacting molecules and that the measured forces obey the predictions of a Markovian model for the strength of multiple parallel bonds. We also discuss the implications of our results to the interpretation of force spectroscopy measurements in multiple bond systems.
Date: December 7, 2005
Creator: Sulchek, T A; Friddle, R W & Noy, A
Partner: UNT Libraries Government Documents Department

Study of the effects of a disaster at Grand Coulee Dam upon the Hanford Works

Description: Declassified 23 Nov 1973. It is assumed that the Grand Coulee Dam would be destroyed by one direct hit following detonation of an atomic bomb. Major effects of the explosion include flooding and isolation of Richland, flooding of Midway Substation, and flooding of surrounding areas. Maximum water elevations following a direct hit and indirect hits are estimated. Data are presented for flow through openings and flow through dam failure. (HLW)
Date: February 1, 1950
Creator: Kramer, H.A.
Partner: UNT Libraries Government Documents Department

Cryostat "UV" Relief Valve Selection and Process Flow

Description: This report describes the selection of the relief valves for the D-Zero cryostats. The selection was based on the flow requirements calculated in D-Zero engineering note 3740.214,224-EN-6 under fire conditions (1200 F, no vacuum) for the central cryostat; 264 SCFM. This value was calculated from section 5.3.5 of 'Pressure Relief Device Standards; S 1.3-Compressed Gas Storage Containers', published by the Compressed Gas Association, Inc. The flow calculated above is far greater than the required fire condition flow capacity of 264 SCFM. The improbable 70 F flow temperature value of 738 SCFM is still much greater than the required fire capacity. The flow capacity of the paralleled supplemental rupture disc is 2640 SCFM, independently greater than the fire condition flow requirement.
Date: August 11, 1987
Creator: Mulholland, G. T. & Wintercorn, S. J.
Partner: UNT Libraries Government Documents Department

Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration

Description: Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle mode dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.
Date: February 5, 2003
Creator: Au, M.
Partner: UNT Libraries Government Documents Department

APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

Description: The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.
Date: October 7, 1998
Creator: Hamm, L. L.
Partner: UNT Libraries Government Documents Department

Analecta of structures formed during the 28 June 1992 Landers-Big Bear, California earthquake sequence (including maps of shear zones, belts of shear zones, tectonic ridge, duplex en echelon fault, fault elements, and thrusts in restraining steps)

Description: The June 28, 1992, M{sub s} 7.5 earthquake at Landers, California, which occurred about 10 km north of the community of Yucca Valley, California, produced spectacular ground rupturing more than 80 km in length (Hough and others, 1993). The ground rupturing, which was dominated by right-lateral shearing, extended along at least four distinct faults arranged broadly en echelon. The faults were connected through wide transfer zones by stepovers, consisting of right-lateral fault zones and tension cracks. The Landers earthquakes occurred in the desert of southeastern California, where details of ruptures were well preserved, and patterns of rupturing were generally unaffected by urbanization. The structures were varied and well-displayed and, because the differential displacements were so large, spectacular. The scarcity of vegetation, the aridity of the area, the compactness of the alluvium and bedrock, and the relative isotropy and brittleness of surficial materials collaborated to provide a marvelous visual record of the character of the deformation zones. The authors present a series of analecta -- that is, verbal clips or snippets -- dealing with a variety of structures, including belts of shear zones, segmentation of ruptures, rotating fault block, en echelon fault zones, releasing duplex structures, spines, and ramps. All of these structures are documented with detailed maps in text figures or in plates (in pocket). The purpose is to describe the structures and to present an understanding of the mechanics of their formation. Hence, most descriptions focus on structures where the authors have information on differential displacements as well as spatial data on the position and orientation of fractures.
Date: December 31, 1997
Creator: Johnson, A.M.; Johnson, N.A.; Johnson, K.M.; Wei, W.; Fleming, R.W.; Cruikshank, K.M. et al.
Partner: UNT Libraries Government Documents Department

Seismicity and crustal structure at the Mendocino triple junction, Northern California

Description: A high level of seismicity at the Mendocino triple junction in Northern California reflects the complex active tectonics associated with the junction of the Pacific, North America, and Gorda plates. To investigate seismicity patterns and crustal structure, 6193 earthquakes recorded by the Northern California Seismic Network (NCSN) are relocated using a one-dimensional crustal velocity model. A near vertical truncation of the intense seismic activity offshore Cape Mendocino follows the strike of the Mattole Canyon fault and is interpreted to define the Pacific plate boundary. Seismicity along this boundary displays a double seismogenic layer that is attributed to interplate activity with the North America plate and Gorda plate. The interpretation of the shallow seismogenic zone as the North America - Pacific plate boundary implies that the Mendocino triple junction is situated offshore at present. Seismicity patterns and focal mechanisms for events located within the subducting Gorda pl ate are consistent with internal deformation on NE-SW and NW-SE trending rupture planes in response to north-south compression. Seismic sections indicate that the top of the Gorda plate locates at a depth of about 18 Km beneath Cape Mendocino and dips gently east-and southward. Earthquakes that are located in the Wadati-Benioff zone east of 236{sup o}E show a change to an extensional stress regime indicative of a slab pull force. This slab pull force and scattered seismicity within the contractional forearc region of the Cascadia subduction zone suggest that the subducting Gorda plate and the overriding North America plate are strongly coupled. The 1992 Cape Mendocino thrust earthquake is believed to have ruptured a blind thrust fault in the forearc region, suggesting that strain is accumulating that must ultimately be released in a potential M 8+ subduction earthquake.
Date: December 1, 1998
Creator: Dicke, M.
Partner: UNT Libraries Government Documents Department

Rupture loop annex ion exchange RLAIX vault deactivation

Description: This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.
Date: August 1, 1996
Creator: Ham, J.E. & Harris, D.L., Westinghouse Hanford
Partner: UNT Libraries Government Documents Department


Description: Brookhaven National Laboratory (BNL) has monitored its releases to the environment since its inception in 1947. From 1962 to 1966 and from 1971 to the present, annual reports,were published that recorded the emissions and releases to the environment from Laboratory operations. In 1998, a report was written to summarize the environmental data for the years 1967 to 1970. One of the purposes of the current report is to complete BNL's environmental history by covering the period from 1948 through 1961. The activities in 1947 were primarily organizational and there is no information on the use of radiation at the Laboratory before 1948. An additional objective of this report is to provide environmental data to the Agency for Toxic Substances and Disease Registry (ATSDR). The report does not provide an estimate of the doses associated with BNL operations. The report is comprised of two parts. The first part is a summary of emissions, releases, and environmental monitoring information including a discussion of the uncertainties in these data. Part two contains the detailed information on the approach taken to estimate the releases from the fuel cartridge failures at the Brookhaven Graphite Research Reactor (BGRR). A series of appendices present more detailed information on these events in tabular form. The approach in this report is to be reasonable, conservative, (pessimistic), and transparent in estimating releases from fuel cartridge ruptures. Clearly, reactor stack monitoring records and more extensive records would have greatly improved this effort, but in accordance with Atomic Energy Commission (AEC) Appendix 0230 Annex C-9, many of the detailed records from this time were not retained.
Date: May 30, 2001
Partner: UNT Libraries Government Documents Department

Broad belts of shear zones: The common form of surface rupture produced by the 28 June 1992 Landers, California, earthquake

Description: Surface rupturing during the 28 June 1992, Landers, California earthquake, east of Los Angeles, accommodated right-lateral offsets up to about 6 m along segments of distinct, en echelon fault zones with a total length of about 80 km. The offsets were accommodated generally not by faults -- distinct slip surfaces -- but rather by shear zones, tabular bands of localized shearing. In long, straight stretches of fault zones at Landers the rupture is characterized by telescoping of shear zones and intensification of shearing: broad shear zones of mild shearing, containing narrow shear zones of more intense shearing, containing even-narrower shear zones of very intense shearing, which may contain a fault. Thus the ground ruptured across broad belts of shearing with subparallel walls, oriented NW. Each broad belt consists of a broad zone of mild shearing, extending across its entire width (50 to 200 m), and much narrower (a few m wide) shear zones that accommodate most of the offset of the belt and are portrayed by en echelon tension cracks. In response to right-lateral shearing, the slices of ground bounded by the tension cracks rotated in a clockwise sense, producing left lateral shearing, and the slices were forced against the walls of the shear zone, producing thrusting. Even narrower shear zones formed within the narrow shear zones, and some of these were faults. Although the narrower shear zones probably are indicators to right-lateral fault segments at depth, the surface rupturing during the earthquake is characterized not by faulting, but by zones of shearing at various scales. Furthermore, understanding of the formation of the shear zones may be critical to understanding of earthquake faulting because, where faulting is associated with the formation of a shear zone, the faulting occurs late in the development of the shear zone. The faulting occurs after ...
Date: December 31, 1993
Creator: Johnson, A.M.; Cruikshank, K.M. & Fleming, R.W.
Partner: UNT Libraries Government Documents Department

The Effect of Thermo-mechanical Processing on the Mechanical Properties of Molybdenum-2 Volume%Lanthana

Description: Variations in oxide species and consolidation method have been shown to have a significant effect on the mechanical properties of oxide dispersion strengthened (ODS) molybdenum material. The mechanical behavior of molybdenum - 2 Volume % La[sub]2O[sub]3 mill product forms, produced by a wet doping process, were characterized over the temperature range of -150 degrees C to 1800 degrees C. The various mill product forms evaluated ranged from thin sheet stock to bar stock. Tensile properties of the material in the various product forms were not significantly affected by the vast difference in total cold work. Creep properties, however, were sensitive to the total amount of cold work as well as the starting microstructure. Stress-relieved material had superior creep rupture properties to recrystallized material at 1200 degrees C, while at 1500 degrees C and above the opposite was observed. Thus it is necessary to match the appropriate thermo-mechanical processing and microstructure of molybdenum - 2 volume % LA[sub]2O[sub]3 to the demands of the application being considered.
Date: March 14, 2001
Creator: Mueller, A.J.; R.W. Buckman,Jr. & A.J. Shields,Jr
Partner: UNT Libraries Government Documents Department


Description: A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable ...
Date: February 3, 2004
Creator: Morasca, P; Mayeda, K; Malagnini, L & Walter, W
Partner: UNT Libraries Government Documents Department