833 Matching Results

Search Results

Advanced search parameters have been applied.

Collisionality Scaling of Main-ion Toroidal and Poloidal Rotation in Low Torque DIII-D Plasmas

Description: In tokamak plasmas with low levels of toroidal rotation, the radial electric fi eld Er is a combination of pressure gradient and toroidal and poloidal rotation components, all having similar magnitudes. In order to assess the validity of neoclassical poloidal rotation theory for determining the poloidal rotation contribution to Er , Dα emission from neutral beam heated tokamak discharges in DIII-D [J.L. Luxon, Nucl. Fusion 42 , 614 (2002)] has been evaluated in a sequence of low torque (electron cyclotron resonance heating and balanced diagnostic neutral beam pulse) discharges to determine the local deuterium toroidal rotation velocity. By invoking the radial force balance relation the deuterium poloidal rotation can be inferred. It is found that the deuterium poloidal low exceeds the neoclassical value in plasmas with collisionality #23;#3; νi < 0: 1, being more ion diamagnetic, and with a stronger dependence on collisionality than neoclassical theory predicts. At low toroidal rotation, the poloidal rotation contribution to the radial electric fi eld and its shear is signi cant. The eff ect of anomalous levels of poloidal rotation on the radial electric fi eld and cross fi eld heat transport is investigated for ITER parameters.
Date: May 10, 2013
Creator: Grierson, B. A.; Burrell, K. H.; Solomon, W. M.; Budny, R. V. & Candy, J.
Partner: UNT Libraries Government Documents Department

Applicability of the hypersonic similarity rule to pressure distributions which include the effects of rotation for bodies of revolution at zero angle of attack

Description: The analysis of Technical Note 2250, 1950, is extended to include the effects of flow rotation. It is found that the theoretical pressure distributions over drive cylinders can be related by the hypersonic similarity rule with sufficient accuracy for most engineering purposes. The error introduced into pressure distributions and drag effective cylinders by ignoring the rotation term in the characteristic equations is investigated.
Date: June 1951
Creator: Rossow, Vernon J.
Partner: UNT Libraries Government Documents Department

Rotation in Free Fall of Rectangular Wings of Elongated Shape

Description: "The present report of Mr. Dupleich is the summary of a very extensive experimental study of the well-known mechanical phenomenon: the rotation in free fall (* air, for instance) of more or less elongated rectangles cut out of paper or pasteboard. This phenomenon, the conditions for existence of which depend chiefly on the elongated of the small plate and its weight per unit area, is essentially an aerodynamic phenomenon and as such, raises questions of a certain interest to our department. We believe that the modern concepts of the mechanics of fluids do not have the range attributed to them" (p. 1).
Date: April 1949
Creator: Dupleich, Paul
Partner: UNT Libraries Government Documents Department

Soil Productivity As Affected by Crop Rotation

Description: This bulletin discusses the effect of crop rotation practices on soil productivity, and also describes the possible effects of fertilizers and other forms of soil improvement. "The purposes of the discussion which follows are to emphasize the value of crop rotation in farming economy and to stress the principles of rotation in their relation to the maintenance of soil productivity and to soil improvement." -- p. 5
Date: 1926
Creator: Weir, Wilbert W.
Partner: UNT Libraries Government Documents Department

Influence of Solid-Body Rotation on Screen-Produced Turbulence

Description: Note presenting an investigation of the influence of solid-body rotation on a screen-produced turbulence in a flow between concentric, rotating cylinders. Radial distributions of the three components of turbulence intensity and the three turbulent shear stresses were measured at a fixed distance downstream of the screen both with and without rotation.
Date: August 1958
Creator: Traugott, Stephen C.
Partner: UNT Libraries Government Documents Department

Discrepancies Between Theoretical and Observed Behavior of Cyclically Loaded Bearings

Description: Note presenting an analysis of discrepancies between theory and the experimental behavior of a cyclically loaded shaft rotating in a sleeve bearing. For constant loads rotating at one-half the frequency of shaft rotation, eccentricity ratios were found to be unity when kerosene was used to lubricate the test bearing.
Date: November 1951
Creator: Dayton, R. W.; Simons, E. M. & Fend, F. A.
Partner: UNT Libraries Government Documents Department

Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment

Description: This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.
Date: July 9, 2009
Creator: Shaing, K. C.
Partner: UNT Libraries Government Documents Department

Encapsulation of Protonated Diamines in a Water-Soluble Chiral, Supramolecular Assembly Allows for Measurement of Hydrogen-Bond Breaking Followed by Nitrogen Inversion/Rotation (NIR)

Description: Amine nitrogen inversion, difficult to observe in aqueous solution, is followed in a chiral, supramolecular host molecule with purely-rotational T-symmetry that reduces the local symmetry of encapsulated monoprotonated diamines and enables the observation and quantification of {Delta}G{double_dagger} for the combined hydrogen-bond breaking and nitrogen inversion rotation (NIR) process. Free energies of activation for the combined hydrogen-bond breaking and NIR process inside of the chiral assembly were determined by the NMR coalescence method. Activation parameters for ejection of the protonated amines from the assembly confirm that the NIR process responsible for the coalescence behavior occurs inside of the assembly rather than by a guest ejection/NIR/re-encapsulation mechanism. For one of the diamines, N,N,N{prime},N{prime}-tetramethylethylenediamine (TMEDA), the relative energy barriers for the hydrogen-bond breaking and NIR process were calculated at the G3(MP2)//B3LYP/6-31++G(d,p) level of theory, and these agreed well with the experimental data.
Date: September 19, 2007
Creator: Meux, Susan C.; Pluth, Michael D.; Bergman, Robert G. & Raymond, Kenneth N.
Partner: UNT Libraries Government Documents Department

Corn culture.

Description: A general guide to growing corn crops in the United States, including selection, land preparation, planting, culture, and insect and disease control.
Date: 1940
Creator: Richey, Frederick D. (Frederick David), b. 1884
Partner: UNT Libraries Government Documents Department

On the Elasto-Plastic Response of a Large-Tow Triaxial Braided Composite

Description: The elastic-plastic response of a large-tow 0{sup o}/{+-}{theta}{sup o} tri-axially braided composite is numerically simulated to determine the elastic coefficients and post-yield behavior. The ratios of extensional to flexural effective Young's moduli vary from 0.30 to 0.52 in the longitudinal direction and 0.90 to 0.95 in the transverse direction. Measurements on a 2-ply 0{sup o}/{+-} 30{sup o} braid support these numerical trends. The onset of macro yield in uniaxial extension coincides with the experimental values in the longitudinal direction while it is nearly twice the experimental values in the transverse direction. In simple shear, matrix plasticity around the undulations facilitates local rotation of the braiders at the onset of macro yield. Under uniaxial flexure, modest stiffening occurs prior to strain softening in both the principal directions.
Date: June 14, 2000
Creator: Zywicz, E.; O'Brien, M.J. & Nguyen, T.
Partner: UNT Libraries Government Documents Department

Free-Flight-Tunnel Investigation of the Effect of Mode of Propeller Rotation Upon the Lateral-Stability Characteristics of a Twin-Engine Airplane Model With Single Vertical Tails of Different Size

Description: Report presenting an investigation of the effect of direction of propeller rotation on the dynamic lateral stability characteristics of a twin-engine airplane model equipped with single vertical tails of three different sizes. The effects of flap deflection and amount of power were also studied. The most satisfactory lateral-stability characteristics of the model in flight were encountered for the model with large vertical-tail areas.
Date: October 1943
Creator: Pitkin, Marvin
Partner: UNT Libraries Government Documents Department

Synthesis and characterization of molecules to study the conformational barriers of fluorocarbon chains

Description: Fluorocarbons are known to be stiffer than their hydrocarbon analogues, a property that underlines the extensive industrial application of fluorocarbon materials. Although there has been previous studies on the rotational barrier of molecules having fluorocarbon centers, a detailed systematic study is necessary to quantify flurocarbon stiffness. The molecules, Pyrene-(CF2)n-Pyrene, Pyrene-(CF2)n-F, Pyrene-(CH2)n-Pyrene and Pyrene-(CH2)n-H were therefore synthesized to enable the determination of the barrier to rotation of the carbon backbone in fluorocarbons. Conformational studies will be completed with steady-state and time-dependent emission spectroscopy.
Date: May 2000
Creator: Niyogi, Sandip
Partner: UNT Libraries


Description: The second-order nonlinear differential equation for the rotation of Mercury is shown to imply locked-in motion when the period is within the range (2T/3) [1-{lambda} cos 2{pi}t/T {+-} 2/3 (21{lambda}e/2){sup 1/2}], where e is the eccentricity and T the period of Mercury's orbit, the time t is measured from perihelion, and {lambda} = (B-A)/C measures the planet's distortion. For values near 2T/3, the instantaneous period oscillates about 2T/3 with period (21{lambda}e/2){sup -1/2}T.
Date: January 1, 1966
Creator: Laslett, L. Jackson & Sessler, Andrew M.
Partner: UNT Libraries Government Documents Department

Flow-Based Detection of Bar Coded Particles

Description: We have developed methods for flow control, electric field alignment, and readout of colloidal Nanobarcodes{copyright}. Our flow-based detection scheme leverages microfluidics and alternate current (AC) electric fields to align and image particles in a well-defined image plane. Using analytical models of the particle rotation in electric fields we can optimize the field strength and frequency necessary to align the particles. This detection platform alleviates loss of information in solution-based assays due to particle clumping during detection.
Date: June 24, 2005
Creator: Rose, K A; Dougherty, G M & Santiago, J G
Partner: UNT Libraries Government Documents Department

Effect of Slipstream Rotation in Producing Asymmetric Forces on a Fuselage

Description: Note presenting an approximate theory of the effect of slipstream rotation on the forces on a fuselage without a wing, which represents the slipstream rotation by the flow about a vortex aligned with the longitudinal axis. A wind-tunnel investigation was made primarily to check the predictions for the lateral force on a fuselage shaped as a body of revolution.
Date: March 1947
Creator: Ribner, Herbert S. & MacLachlan, Robert
Partner: UNT Libraries Government Documents Department

Table of Vibrational Force Constants

Description: Tabulations are included for: vibrational and rotational parameters for diatomic molecules; quadratic, cubic, and quartic vibrational force constants of diatomic molecules; parameters for empirical functibns relating force constants to bond length; and cubic force constants for bond stretching in polyatomic molecules. (B.O.G.)
Date: July 1, 1961
Creator: Herschbach, D. R. & Laurie, V. W.
Partner: UNT Libraries Government Documents Department

An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

Description: A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters were calculated using the "hard sphere" model of the kinetic theory of gases. The results were many times larger than the size of the molecule itself. This suggests that the dominant interaction is a long range dipole-dipole force interaction.
Date: May 1993
Creator: Hajsaleh, Jamal Y. (Jamal Yousef)
Partner: UNT Libraries

A Comprehensive Model for the Rotational Spectra of Propyne CH₃CCH in the Ground and V₁₀=1,2,3,4,5 Vibrational States

Description: The energy states of C₃ᵥ symmetric top polyatomic molecules were studied. Both classical and quantum mechanical methods have been used to introduce the energy states of polyatomic molecules. Also, it is shown that the vibration-rotation spectra of polyatomic molecules in the ground and excited vibrational states can be predicted by group theory. A comprehensive model for predicting rotational frequency components in various v₁₀ vibrational levels of propyne was developed by using perturbation theory and those results were compared with other formulas for C₃ᵥ symmetric top molecules. The v₁₀=1,2,3 and ground rotational spectra of propyne in the frequency range 17-70 GHz have been reassigned by using the derived comprehensive model. The v₁₀=3 and v₁₀=4 rotational spectra of propyne have been investigated in the 70 GHz, and 17 to 52 GHz regions, respectively, and these spectral components assigned using the comprehensive model. Molecular constants for these vibrationally excited states have been determined from more than 100 observed rotational transitions. From these experimentally observed components and a model based upon first principles for C₃ᵥ symmetry molecules, rotational constants have been expressed in a form which enables one to predict rotational components for vibrational levels for propyne up to v₁₀=5. This comprehensive model also appears to be useful in predicting rotational components in more highly excited vibrational levels but data were not available for comparison with the theory. Several techniques of assignment of rotational spectra for each excited vibrational state are discussed. To get good agreement between theory and experiment, an additional term 0.762(J+1) needed to be added to Kℓ=1 states in v₁₀=3. No satisfactory theoretical explanation of this term has been found. Experimentally measured frequencies for rotational components for J→(J+1)=+1 (0≤J≤3) in each vibration v₁₀=n (0≤n≤4) are presented and compared with those calculated using the results of basic perturbation theory. The v₉=2 rotational ...
Date: December 1986
Creator: Rhee, Won Myung
Partner: UNT Libraries

Geometric Phase Of The Faraday Rotation Of Electromagnetic Waves In Magnetized Plasma

Description: The geometric phase of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase is investigated. The in uence of the geometric phase to plasma diagnostics using Faraday rotation is also discussed as an application of the theory.
Date: November 7, 2011
Creator: Qin, Jian Liu and Hong
Partner: UNT Libraries Government Documents Department

Final Report of MBX experiment

Description: The MBX experiment was built during the grant period. Details can be found in publications about MBX experiment. We created a low density plasma in a mirror configuration and rotated it at supersonic speeds in the theta direction. Under these conditions the plasma presents a high asymmetry in the current, plasma potential and consequently rotation with the voltage applied. We developed a two fluid model to describe the measurements based on a magnetofluid states ansatz. We also observed bistable and multiple states predicted by the two fluid model.
Date: April 2, 2007
Creator: Bengtson, Roger D & Valanju, Prashant
Partner: UNT Libraries Government Documents Department