26 Matching Results

Search Results

Advanced search parameters have been applied.

IFESS 2005 Special Session 5 Artifical Vision

Description: A special session on visual prostheses was held during the Annual Meeting of the International Functional Electrical Stimulation Society (IFESS), in Montreal, Canada, July 5-9, 2005. IFESS is a meeting that typically attracts researchers in implantable nerve stimulators, functional electrical stimulation, and rehabilitation. All of these areas have significant overlap with the retinal prosthesis, but these areas have decades of research behind them. The special session provided a forum for researchers with vast experience in nerve stimulation to interact with leading research in retinal and cortical visual prostheses. The grant paid for the travel and conference costs of the presenters in the session. The session was chaired by James Weiland (the PI on this grant). The session co-chair was Phil Troyk, Ph.D., from the Illinois Institute of Technology. The Department of Energy was acknowledged at the start of the session as the sponsor. The following talks were delivered: Clinical Trial of a Prototype Retinal Prosthesis James Weiland, Ph.D. Doheny Eye Institute, Los Angeles, California The U.S. Department of Energy's Artificial Sight Program Elias Greenbaum, Ph.D. Oak Ridge National Laboratory, Oak Ridge, Tennessee A 16-Channel stimulator ASIC for use in an intracortical visual prosthesis Phillip R. Troyk, Ph.D. Illinois Institute of Technology, Chicago, Illinois Two approaches to the Optic Nerve Visual Prosthesis Jean Delbeke, M.D. University Cath de Louvain, Louvain, Belgium Design and Implementation of High Power Efficiency Modules for a Cortical Visual Stimulator Mohammad Sawan, Ph.D. Ecole Polytechnique de Montreal, Montreal, Canada Remaining funds from the grant were used to support Dr. Weiland's travel to the Association for Research in Vision and Ophthalmology in May 2006, with DOE approval, where several projects, supported by the DOE artificial retina program, were presented.
Date: July 1, 2005
Creator: Weiland, J. D.; Greenbaum, E.; Delbeke, J.; Troyk, P. R. & Sawan, M.
Partner: UNT Libraries Government Documents Department

The Impact of Genetics, Socioeconomic Status, and Lifestyle Factors on Visual Health in an Adult Population

Description: The purpose of this dissertation was to understand how genetics, socioeconomic status (SES), and lifestyle factors influence the development of age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy in an adult population in Dallas County. Two hundred fifty-three older adults participated in this study as the sample. Crosstabulation and binary logistic regression were utilized to analyze the data. Results indicated a disparity among participants' test scores, visual health status, and perceptions of their visual impairment and highlighted the fact that many seniors are not educated about age-related retinal disorders. Furthermore, variables reaching statistical significance were consistent with the literature included race/ethnicity, age, having a family history of both AMD and diabetes, frequency of eye exams, and level of education. The results not consistent with the literature as affecting visual health included health insurance, access to health care, body weight, and smoking status. Recommendations for future study included applied research focusing on determining risk factors, raising awareness, educating, and providing early detection of these diseases among low to middle income Caucasian, African American, and Hispanic older adults.
Date: December 2010
Creator: Mitzel, Gina Marie
Partner: UNT Libraries

Modeling and Simulation of Microelectrode-Retina Interactions

Description: The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.
Date: November 30, 2002
Creator: Beckerman, M
Partner: UNT Libraries Government Documents Department

In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

Description: Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.
Date: January 5, 2006
Creator: Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P et al.
Partner: UNT Libraries Government Documents Department

Nonlinear spatio-temporal interactions and neural connections in human vision using transient and M-sequence stimuli

Description: Reciprocal connections, in essence, are the dynamic wiring (connections) of the neural network circuitry. Given the high complexity of the neural circuitry in the human brain, it is quite a challenge to study the dynamic wiring of highly parallel and widely distributed neural networks. The measurements of stimulus evoked coherent oscillations provide indirect evidence of dynamic wiring. In this study, in addition to the coherent oscillation measurements, two more techniques are discussed for testing possible dynamic wiring: measurements of spatio-temporal interactions beyond the classical receptive fields, and neural structural testing using nonlinear systems analysis.
Date: February 1, 1996
Creator: Chen, H.W.; Aine, C.J.; Flynn, E.R. & Wood, C.C.
Partner: UNT Libraries Government Documents Department

Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

Description: Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, they used a biosynthetic {sup 13}C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic {sup 13}C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of {sup 13}C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The {sup 13}C/{sup 12}C ratio in the TTR extract was measured by GCC-IRMS. There was no {sup 13}C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.
Date: May 31, 2003
Creator: Chen, Liwei
Partner: UNT Libraries Government Documents Department

High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

Description: Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.
Date: August 11, 2006
Creator: Chen, D C; Jones, S M; Silva, D A & Olivier, S S
Partner: UNT Libraries Government Documents Department

High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

Description: Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.
Date: January 25, 2007
Creator: Chen, D; Jones, S M; Silva, D A & Olivier, S S
Partner: UNT Libraries Government Documents Department

Characterization and Operation of Liquid Crystal Adaptive Optics Phoropter

Description: Adaptive optics (AO), a mature technology developed for astronomy to compensate for the effects of atmospheric turbulence, can also be used to correct the aberrations of the eye. The classic phoropter is used by ophthalmologists and optometrists to estimate and correct the lower-order aberrations of the eye, defocus and astigmatism, in order to derive a vision correction prescription for their patients. An adaptive optics phoropter measures and corrects the aberrations in the human eye using adaptive optics techniques, which are capable of dealing with both the standard low-order aberrations and higher-order aberrations, including coma and spherical aberration. High-order aberrations have been shown to degrade visual performance for clinical subjects in initial investigations. An adaptive optics phoropter has been designed and constructed based on a Shack-Hartmann sensor to measure the aberrations of the eye, and a liquid crystal spatial light modulator to compensate for them. This system should produce near diffraction-limited optical image quality at the retina, which will enable investigation of the psychophysical limits of human vision. This paper describes the characterization and operation of the AO phoropter with results from human subject testing.
Date: February 5, 2003
Creator: Awwal, A; Bauman, B; Gavel, D; Olivier, S; Jones, S; Hardy, J L et al.
Partner: UNT Libraries Government Documents Department

Characterizing the Material Properties of Polymer-Based Microelectrode Arrays for Retinal Prosthesis

Description: The Retinal Prosthesis project is a three year project conducted in part at the Lawrence Livermore National Laboratory and funded by the Department of Energy to create an epiretinal microelectrode array for stimulating retinal cells. The implant must be flexible to conform to the retina, robust to sustain handling during fabrication and implantation, and biocompatible to withstand physiological conditions within the eye. Using poly(dimethyl siloxane) (PDMS), LLNL aims to use microfabrication techniques to increase the number of electrodes and integrate electronics. After the initial designs were fabricated and tested in acute implantation, it became obvious that there was a need to characterize and understand the mechanical and electrical properties of these new structures. This knowledge would be imperative in gaining credibility for polymer microfabrication and optimizing the designs. Thin composite microfabricated devices are challenging to characterize because they are difficult to handle, and exhibit non-linear, viscoelastic, and anisotropic properties. The objective of this research is to device experiments and protocols, develop an analytical model to represent the composite behavior, design and fabricate test structures, and conduct experimental testing to determine the mechanical and electrical properties of PDMS-metal composites. Previous uniaxial stretch tests show an average of 7% strain before failure on resistive heaters of similar dimensions deposited on PDMS. Lack of background information and questionable human accuracy demands a more sophisticated and thorough testing method. An Instron tensile testing machine was set up to interface with a digital multiplexor and computer interface to simultaneously record and graph position, load, and resistance across devices. With a compliant load cell for testing polymers and electrical interconnect grips designed and fabricated to interface the sample to the electronics, real-time resistance measurements were taken. Wafers of test structures were fabricated with variables such as lead width, pad to lead interface shape, PDMS thickness, metal ...
Date: May 10, 2003
Creator: Park, C S & Maghribi, M
Partner: UNT Libraries Government Documents Department

Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

Description: Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1 {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.
Date: March 4, 1997
Creator: Strauss, M.; Amendt, P.A.; London, R.A.; Maitland, D.J.; Glinsky, M.E.; Lin, C.P. et al.
Partner: UNT Libraries Government Documents Department

Adaptive optics ophthalmologic systems using dual deformable mirrors

Description: Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.
Date: February 1, 2007
Creator: Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R et al.
Partner: UNT Libraries Government Documents Department

Microfabrication of an Implantable silicone Microelectrode array for an epiretinal prosthesis

Description: Millions of people suffering from diseases such as retinitis pigmentosa and macular degeneration are legally blind due to the loss of photoreceptor function. Fortunately a large percentage of the neural cells connected to the photoreceptors remain viable, and electrical stimulation of these cells has been shown to result in visual perception. These findings have generated worldwide efforts to develop a retinal prosthesis device, with the hope of restoring vision. Advances in microfabrication, integrated circuits, and wireless technologies provide the means to reach this challenging goal. This dissertation describes the development of innovative silicone-based microfabrication techniques for producing an implantable microelectrode array. The microelectrode array is a component of an epiretinal prosthesis being developed by a multi-laboratory consortium. This array will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces. Because the array is intended as a long-term implant, vital biological and physical design requirements must be met. A retinal implant poses difficult engineering challenges due to the size of the intraocular cavity and the delicate retina. Not only does it have to be biocompatible in terms of cytotoxicity and degradation, but it also has to be structurally biocompatible, with regard to smooth edges and high conformability; basically mimicking the biological tissue. This is vital to minimize stress and prevent physical damage to the retina. Also, the device must be robust to withstand the forces imposed on it during fabrication and implantation. In order to meet these biocompatibility needs, the use of non-conventional microfabrication materials such as silicone is required. This mandates the enhancement of currently available polymer-based fabrication techniques and the development of new microfabrication methods. Through an iterative process, devices were designed, fabricated, tested and implanted into a canine eye. Metal traces were embedded within a ...
Date: June 10, 2003
Creator: Maghribi, M
Partner: UNT Libraries Government Documents Department

Stretchable Micro-Electrode Array

Description: This paper focuses on the design consideration, fabrication processes and preliminary testing of the stretchable micro-electrode array. We are developing an implantable, stretchable micro-electrode array using polymer-based microfabrication techniques. The device will serve as the interface between an electronic imaging system and the human eye, directly stimulating retinal neurons via thin film conducting traces and electroplated electrodes. The metal features are embedded within a thin ({approx}50 micron) substrate fabricated using poly (dimethylsiloxane) (PDMS), a biocompatible elastomeric material that has very low water permeability. The conformable nature of PDMS is critical for ensuring uniform contact with the curved surface of the retina. To fabricate the device, we developed unique processes for metalizing PDMS to produce robust traces capable of maintaining conductivity when stretched (5%, SD 1.5), and for selectively passivating the conductive elements. An in situ measurement of residual strain in the PDMS during curing reveals a tensile strain of 10%, explaining the stretchable nature of the thin metalized devices.
Date: March 8, 2002
Creator: Maghribi, M; Hamilton, J; Polla, D; Rose, K; Wilson, T & Krulevitch, P
Partner: UNT Libraries Government Documents Department

[News Clip: Science Products]

Description: Video footage from the KXAS-TV/NBC station in Fort Worth, Texas, to accompany a news story. This story aired at 10:00 P.M.
Date: November 10, 1997
Creator: KXAS-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

Mechanism of activation of light-activated phosphodiesterase and evidence for homology with hormone-activated adenylate cyclase

Description: Light-activated cGMP phosphodiesterase (PDE) is one of the effector proteins in the rod outer segments in vertebrate retina. The hydrolysis of cGMP in rod occurs with a speed and light sensitivity which suggests a role for this hydrolysis in visual transduction. In fact, there is electrophysiological data which supports the possibility that cGMP could regulate rod membrane voltage. PDE shows very rapid activation in the presence of photons and GTP. We have called attention to the intriguing analogy between light activated rod phosphodiesterase and hormone activated adenylate cyclase. A number of studies have implicated the binding of GTP to a GTP binding protein as a factor in the hormone dependent activation of adenylate cyclase. Moreover, Cassel and Selinger have shown that hydrolysis of GTP is a component in the inactivation of the hormone dependent adenylate cyclase. We review here recent additional data which provide specific molecular details of the mechanism of light activation of rod PDE as well as demonstrate the exchange of components between light activated PDE and hormone activated cyclase.
Date: January 1, 1983
Creator: Bitensky, M.W.; Yamazaki, A.; Wheeler, M.A.; George, J.S. & Rasenick, M.M.
Partner: UNT Libraries Government Documents Department

Comparative nuclear effects of biomedical interest. Civil effects study

Description: Selected physical and biological data bearing upon the environmental variations created by nuclear explosions are presented in simplified form. Emphasis is placed upon the ``early`` consequences of exposure to blast, thermal radiation, and ionizing radiation to elucidate the comparative ranges of the major effects as they vary with explosive yield and as they contribute to the total hazard to man. A section containing brief definitions of the terminology employed is followed by a section that utilizes text and tabular material to set forth events that follow nuclear explosions and the varied responses of exposed physical and biological materials. Finally, selected quantitative weapons-effects data in graphic and tabular form are presented over a wide range of explosive yields to show the relative distances from Ground Zero affected by significant levels of blast overpressures, thermal fluxes, and initial and residual penetrating ionizing radiations. However, only the ``early`` rather than the ``late`` effects of the latter are considered.
Date: January 12, 1961
Creator: White, C.S.; Bowen, I.G.; Richmond, D.R. & Corsbie, R.L.
Partner: UNT Libraries Government Documents Department

Characterization of an AO-OCT system

Description: Adaptive optics (AO) and optical coherence tomography (OCT) are powerful imaging modalities that, when combined, can provide high-volumetric-resolution, images of the retina. The AO-OCT system at UC Davis has been under development for 2 years and has demonstrated the utility of this technology for microscopic, volumetric, in vivo retinal imaging [1]. The current system uses an AOptix bimorph deformable mirror (DM) for low-order, high-stroke correction [2] and a 140-actuator Boston Micromachines DM for high-order correction [3]. We are beginning to investigate the potential for increasing the image contrast in this system using higher-order wavefront correction. The first step in this analysis is to quantify the residual wavefront error (WFE) in the current system. Developing an error budget is a common tool for improved performance and system design in astronomical AO systems [4, 5]. The process for vision science systems is also discussed in several texts e.g. [6], but results from this type of analysis have rarely been included in journal articles on AO for vision science. Careful characterization of the AO system will lead to improved performance and inform the design of a future high-contrast system. In general, an AO system error budget must include an analysis of three categories of residual WFE: errors in measuring the phase, errors caused by limitations of the DM(s), and errors introduced by temporal variation. Understanding the mechanisms and relative size of these errors is critical to improving system performance. In this paper we discuss the techniques for characterizing these error sources in the AO-OCT system. It is useful to first calculate an error budget for the simpler case using a model eye, and then add the additional errors introduced for the case of a human subject. Measurement error includes calibration error, wavefront sensor (WFS) CCD noise, and sampling errors. Calibration errors must be ...
Date: July 26, 2007
Creator: Evans, J W; Zawadzki, R J; Jones, S; Olivier, S & Werner, J S
Partner: UNT Libraries Government Documents Department

Quality Assessment of Retinal Fundus Images using Elliptical Local Vessel Density

Description: Diabetic retinopathy is the leading cause of blindness in the Western world. The World Health Organisation estimates that 135 million people have diabetes mellitus worldwide and that the number of people with diabetes will increase to 300 million by the year 2025 (Amos et al., 1997). Timely detection and treatment for DR prevents severe visual loss in more than 50% of the patients (ETDRS, 1991). Through computer simulations is possible to demonstrate that prevention and treatment are relatively inexpensive if compared to the health care and rehabilitation costs incurred by visual loss or blindness (Javitt et al., 1994). The shortage of ophthalmologists and the continuous increase of the diabetic population limits the screening capability for effective timing of sight-saving treatment of typical manual methods. Therefore, an automatic or semi-automatic system able to detect various type of retinopathy is a vital necessity to save many sight-years in the population. According to Luzio et al. (2004) the preferred way to detect diseases such as diabetic retinopathy is digital fundus camera imaging. This allows the image to be enhanced, stored and retrieved more easily than film. In addition, images may be transferred electronically to other sites where a retinal specialist or an automated system can detect or diagnose disease while the patient remains at a remote location. Various systems for automatic or semi-automatic detection of retinopathy with fundus images have been developed. The results obtained are promising but the initial image quality is a limiting factor (Patton et al., 2006); this is especially true if the machine operator is not a trained photographer. Algorithms to correct the illumination or increase the vessel contrast exist (Chen & Tian, 2008; Foracchia et al., 2005; Grisan et al., 2006;Wang et al., 2001), however they cannot restore an image beyond a certain level of quality degradation. On ...
Date: January 1, 2010
Creator: Giancardo, Luca; Meriaudeau, Fabrice; Karnowski, Thomas Paul; Chaum, Edward & Tobin Jr, Kenneth William
Partner: UNT Libraries Government Documents Department

Luminance controlled pupil size affects Landolt C task performance. Revision

Description: Subjects judged the orientation of a 2 min. gap Landolt C located at a distance of 2.4 m. The stimuli were presented in central vision on a CRT, at low to medium contrast. The effects of varying the spectrum and luminance of surround lighting were assessed on both pupil size (measured using infrared pupillometry during task performance) and task accuracy. The task display was protected from the surround lighting, so that its luminance and contrast could be varied independently of the changes in the surround lighting. Indirect surround illumination was provided by either two illuminants of very different scotopic spectral content but with the same photopic luminance (Experiments 1 and 3), or by using the same illuminant at two different luminance levels (Experiment 2). In Experiment 3, the effect of changing surround spectrum was compared to the effect of varying task background luminance between 12 cd/m{sup 2} and 73 cd/m{sup 2}. In all experiments, scotopically enhanced surround lighting produced pupil areas which were reduced by almost 50% in comparison with surround lighting with relatively less scotopic luminance. Concomitantly there was improvement in Landolt C task performance with the scotopically enhanced surround lighting at all contrast and luminance levels. In these experiments, smaller pupil sizes were associated with significantly better visual-task performance in spite of lower task retinal illuminance when compared to the condition with larger pupils. These results suggest that changes in surround spectrum can compensate for the effect on task performance of a reduction in task luminance and supports the hypothesis that lighting energy savings could accrue in the workplace by shifting lamp spectra to obtain greater scotopic efficacy.
Date: February 1, 1993
Creator: Berman, S. M.; Fein, G.; Jewett, D. L. & Ashford, F.
Partner: UNT Libraries Government Documents Department

Photo-initiated processes in version. Final report

Description: Progress is reported on an investigation of early events in visual excitation using electron spin resonance signals from retinal materials such as rhodopsin and whole retinas. Electron transfer process in response to light and radical participation in the initial event of vision were investigated. The possibility of using fluorescences as an indicator of structural changes in visual pigments and vitamin A aldehyde radical was studied using intact frog retinas.
Date: March 31, 1978
Creator: Guzzo, A.V.
Partner: UNT Libraries Government Documents Department

Solar energy research at Sandia Laboratories and its effects on health and safety

Description: Various solar energy research and development projects at Sandia Laboratories are discussed with emphasis on the primary health and safety hazard associated with solar concentration systems. This limiting hazard is chorioretinal damage. The unique safety and health hazards associated with solar energy collector and receiver systems cannot be measured yet, but progress is being made rapidly. Research is continuing, especially for eye hazards, with more extensive work planned.
Date: October 1, 1977
Creator: Young, L.L. III
Partner: UNT Libraries Government Documents Department

Luminance controlled pupil size affects Landolt C task performance

Description: Subjects judged the orientation of a 2 min. gap Landolt C located at a distance of 2.4 m. The stimuli were presented in central vision on a CRT, at low to medium contrast. The effects of varying the spectrum and luminance of surround lighting were assessed on both pupil size (measured using infrared pupillometry during task performance) and task accuracy. The task display was protected from the surround lighting, so that its luminance and contrast could be varied independently of the changes in the surround lighting. Indirect surround illumination was provided by either two illuminants of very different scotopic spectral content but with the same photopic luminance (Experiments 1 and 3), or by using the same illuminant at two different luminance levels (Experiment 2). In Experiment 3, the effect of changing surround spectrum was compared to the effect of varying task background luminance between 12 cd/m[sup 2] and 73 cd/m[sup 2]. In all experiments, scotopically enhanced surround lighting produced pupil areas which were reduced by almost 50% in comparison with surround lighting with relatively less scotopic luminance. Concomitantly there was improvement in Landolt C task performance with the scotopically enhanced surround lighting at all contrast and luminance levels. In these experiments, smaller pupil sizes were associated with significantly better visual-task performance in spite of lower task retinal illuminance when compared to the condition with larger pupils. These results suggest that changes in surround spectrum can compensate for the effect on task performance of a reduction in task luminance and supports the hypothesis that lighting energy savings could accrue in the workplace by shifting lamp spectra to obtain greater scotopic efficacy.
Date: February 1, 1993
Creator: Berman, S.M. (Lawrence Berkeley Lab., CA (United States)); Fein, G. (Neurobehavioral Lab. Software, San Rafael, CA (United States)); Jewett, D.L. & Ashford, F. (ABRATech Corp., Mill Valley, CA (United States))
Partner: UNT Libraries Government Documents Department

Cellular proliferation and regeneration following tissue damage. Progress report

Description: Tissue cultures of rabbit retinal vasculature were studied in vivo and in vitro by scanning electron microscopy to elucidate the regnerative process from an injury. Human lens are now being compared with a goal for developing a bioassay for testing the effects of potentially toxic agents. (PCS)
Date: January 1, 1978
Creator: Harding, C.V.
Partner: UNT Libraries Government Documents Department