2,815 Matching Results

Search Results

Advanced search parameters have been applied.

Prospects for higgs search at D0

Description: The D0 experiment is recording physics quality data. Both the detector and the accelerator performance are continually improving. We are studying issues such as the b{bar b} mass resolution, b-jet tagging efficiency, missing E{sub T} resolution, and backgrounds to Higgs processes. We look forward to seeing exciting results. The status of the Higgs search at the upgraded D0 detector is discussed.
Date: April 30, 2003
Creator: Snyder, Scott S.
Partner: UNT Libraries Government Documents Department

Towards sub-10 nm resolution zone plates using the overlaynanofabrication processes

Description: Soft x-ray zone plate microscopy has proven to be a valuable imaging technique for nanoscale studies. It complements nano-analytic techniques such as electron and scanning probe microscopies. One of its key features is high spatial resolution. We developed an overlay nanofabrication process which allows zone plates of sub-20 nm zone widths to be fabricated. Zone plates of 15 nm outer zones were successfully realized using this process, and sub-15 nm resolution was achieved with these zone plates. We extend the overlay process to fabricating zone plates of 12 nm outer zones, which is expected to achieve 10 nm resolution. In addition, we have identified a pathway to realizing sub-10 nm resolution, high efficiency zone plates with tilted zones using the overlay process.
Date: January 23, 2008
Creator: Chao, Weilun; Anderson, Erik H.; Fischer, Peter & Kim, Dong-Hyun
Partner: UNT Libraries Government Documents Department

Inspection 13.2 nm table-top full-field microscope

Description: We present results on a table-top microscope that uses an EUV stepper geometry to capture full-field images with a halfpitch spatial resolution of 55 nm. This microscope uses a 13.2 nm wavelength table-top laser for illumination and acquires images of reflective masks with exposures of 20 seconds. These experiments open the path to the realization of high resolution table-top imaging systems for actinic defect characterization.
Date: February 23, 2009
Creator: Brizuela, F.; Wang, Y.; Brewer, C. A.; Pedaci, F.; Chao, W.; Anderson, E. H. et al.
Partner: UNT Libraries Government Documents Department

Latest results from the SEMATECH Berkeley extreme ultraviolet microfield exposure tool

Description: Microfield exposure tools (METs) continue to play a dominant role in the development of extreme ultraviolet (EUV) resists. One of these tools is the 0.3 numerical aperture SEMATECH Berkeley MET operating as a resist and mask test center. Here they present an update on the tool summarizing some of the latest test and characterization results. they provide an update on the long-term aberration stability of the tool and present line-space imaging in chemically amplified photoresist down to the 20-nm half-pitch level. Although resist development has shown substantial progress in the area of resolution, line-edge-roughness (LER) remains a significant concern. Here we present a summary of recent LER performance results and consider the effect of mask contributors to the LER observed from the SEMATECH Berkeley microfield tool.
Date: September 2, 2008
Creator: Naulleau, Patrick; Anderson, Christopher N.; Chiu, Jerrin; Dean, Kim; Denham, Paul; George, Simi et al.
Partner: UNT Libraries Government Documents Department

A high resolution scale-of-four

Description: A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to preceed the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 μ sec. It will resolve two pulses (occuring at a moderate repetition rate) which are spaced at 0.04 μ sec. A five-volt input signal is sufficient to actuate the device.
Date: August 25, 1949
Creator: Fitch, V.
Partner: UNT Libraries Government Documents Department

Atmospheric test models and numerical experiments for the simulation of the global distribution of weather data transponders

Description: A proposal has been made to establish a high density global network of atmospheric micro transponders to record time, temperature, and wind data with time resolution of {le} 1 minute, temperature accuracy of {+-} 1 K, spatial resolution no poorer than {approx}3km horizontally and {approx}0.1km vertically, and 2-D speed accuracy of {le} 1m/s. This data will be used in conjunction with advanced numerical weather prediction models to provide increases in the reliability of long range weather forecasts. Major advances in data collection technology will be required to provide the proposed high-resolution data collection network. Systems studies must be undertaken to determine insertion requirements, spacing, and evolution of the transponder ensemble, which will be used to collect the data. Numerical models which provide realistic global weather pattern simulations must be utilized in order to perform these studies. A global circulation model with a 3{sup o} horizontal resolution has been used for initial simulations of the generation and evolution of transponder distributions. These studies indicate that reasonable global coverage of transponders can be achieved by a launch scenario consisting of the sequential launch of transponders at specified heights from a globally distributed set of launch sites.
Date: August 25, 1999
Creator: Grossman, A & Molenkamp, C R
Partner: UNT Libraries Government Documents Department

One-Angstrom microscope update

Description: The One-Angstrom Microscope project has attained its goal, and is now producing images down to 1 Angstrom resolution. We have demonstrated transmission electron microscopy of defect structures down to a resolution of 1.1 Angstrom, with evidence that 0.89 Angstrom will be possible. This level of resolution will soon be made available to all those NCEM users who have a requirement for sub-Angstrom resolution.
Date: April 4, 1999
Creator: O'Keefe, Michael A.
Partner: UNT Libraries Government Documents Department

Atomic Resolution Imaging with a sub-50 pm Electron Probe

Description: Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.
Date: March 2, 2009
Creator: Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian & Dahmen, Ulrich
Partner: UNT Libraries Government Documents Department

HIGH-RESOLUTION LIQUID-FILLED MULTI-WIRE CHAMBERS FOR USE INHIGH-ENERGY BEAMS

Description: The authors describe experiments with liquid-xenon-filled wire chambers operating in the proportional mode and the difficulty of achieving useful gain when the anode wires have a spacing < 1 mm. As a result, they have largely turned our attention to chambers with closely spaced wires operated in the ionization mode. They have previously demonstrated a spatial resolution of 15 {micro} rms in this mode, using a 5-wire chamber and a collimated alpha source. They describe the construction of two small high-resolution test chambers to be filled with liquid argon, krypton, or xenon. The chambers consist of two flat cathodes 1 to 2.5 mm apart with a wire plane between them. The wire plane is an array of 24 wires, 5 {micro} in diameter, spaced on 20-{micro} centers, and a charge amplifier is attached to each wire. The space resolution (expected rms < 20 {micro}), time resolution (expected rms < 50 ns), and efficiency will be measured in an accelerator beam. Chambers of this type with only a few hundred wires have sufficient area to cover nearly every beam at NAL.
Date: April 1, 1973
Creator: Derenzo, S.E.; Schwemin, A.; Smits, R.G.; Zaklad, H. & Alvarez, L.W.
Partner: UNT Libraries Government Documents Department

Soft X-Ray Imaging of spin dynamics at high spatial and temporalresolution

Description: Soft X-ray microscopy provides element specific magnetic imaging with a spatial resolution down to 15nm. At XM-1, the full-field soft X-ray microscope at the Advanced Light Source in Berkeley, a stroboscopic pump and probe setup has been developed to study fast magnetization dynamics in ferromagnetic elements with a time resolution of 70ps which is set by the width of the X-ray pulses from the synchrotron. Results obtained with a 2 {micro}m x 4 {micro}m x 45nm rectangular permalloy sample exhibiting a seven domain Landau pattern reveal dynamics up to several nsec after the exciting magnetic field pulse. Domain wall motion, a gyrotropic vortex motion, and a coupling between vortices in the rectangular geometry are observed.
Date: June 1, 2007
Creator: Mesler, Brooke L.; Fischer, Peter; Chao, Weilun & Anderson, Erik H.
Partner: UNT Libraries Government Documents Department

A multi-threshold sampling method for TOF PET signal processing

Description: As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multithreshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to 8 threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and falling edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25 x 6.25 x 25mm{sup 3} LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an {approx}18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an {approx}9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain {approx}300 ps coincidence timing resolution, {approx}14% energy resolution at 511 keV, and {approx}5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition.
Date: February 2, 2009
Creator: Kim, Heejong; Kao, Chien-Min; Xie, Q.; Chen, Chin-Tu; Zhou, L.; Tang, F. et al.
Partner: UNT Libraries Government Documents Department

Developing tiled projection display systems

Description: Tiled displays are an emerging technology for constructing high-resolution semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation [EVL, PowerWall]. In this way, they complement other technologies such as the CAVE [Cruz-Niera92] or ImmersaDesk, [Czernuszenko97], which by design give up pure resolution in favor of width of view and stereo. However, the largest impact may well be in using large-format tiled displays as one of possibly multiple displays in building ''information'' or ''active'' spaces that surround the user with diverse ways of interacting with data and multimedia information flows [IPSI, Childers00, Raskar98, ROME, Stanford, UNC]. These environments may prove to be the ultimate successor of the desktop metaphor for information technology work.
Date: June 8, 2000
Creator: Hereld, M.; Judson, I. R.; Paris, J. & Stevens, R. L.
Partner: UNT Libraries Government Documents Department

High Resolution Upgrade for Core-level Photoemission Spectroscopy

Description: Upgraded the high resolution core-level photoemission beamline U4A at the National Synchrotron Light Source (NSLS) so that it has higher resolution ({approx}30-50 meV) over a broader spectral range (10-200 eV) than is currently available at any other photoemission beamline at NSLS. Such an upgraded beamline will prove to be extremely useful in new studies of bimetallic systems and semiconductor interfaces.
Date: August 31, 1999
Creator: Madey, T. E.
Partner: UNT Libraries Government Documents Department

A Proposal to Upgrade the Silicon Strip Detector

Description: The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)
Date: November 5, 2007
Creator: Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux et al.
Partner: UNT Libraries Government Documents Department

Sensor Development and Readout Prototyping for the STAR Pixel Detector

Description: The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.
Date: January 14, 2009
Creator: Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M. et al.
Partner: UNT Libraries Government Documents Department

Seismic imaging of reservoir flow properties: Resolving waterinflux and reservoir permeability

Description: Methods for geophysical model assessment, in particuale thecomputation of model parameter resolution, indicate the value and thelimitations of time-lapse data in estimating reservoir flow properties. Atrajectory-based method for computing sensitivities provides an effectivemeans to compute model parameter resolutions. We examine the commonsituation in which water encroaches into a resrvoir from below, as due tothe upward movement of an oil-water contact. Using straight-forwardtechniques we find that, by inclusing reflections off the top and bottomof a reservoir tens of meters thick, we can infer reservoir permeabilitybased upon time-lapse data. We find that, for the caseof water influxfrom below, using multiple time-lapse 'snapshots' does not necessarilyimprove the resolution of reservoir permeability. An application totime-lapse data from the Norne field illustrates that we can resolve thepermeability near a producing well using reflections from threeinterfaces associated with the reservoir.
Date: November 27, 2006
Creator: Vasco, D.W. & Keers, Henk
Partner: UNT Libraries Government Documents Department

Automated Structure Solution with the PHENIX Suite

Description: Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.
Date: June 9, 2008
Creator: Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R. et al.
Partner: UNT Libraries Government Documents Department

Multi-CFD Timing Estimators for PET Block Detectors

Description: In a conventional PET system with block detectors, a timing estimator is created by generating the analog sum of the signals from the four photomultiplier tubes (PMT) in a module and discriminating the sum with a single constant fraction discriminator (CFD). The differences in the propagation time between the PMTs in the module can potentially degrade the timing resolution of the module. While this degradation is probably too small to affect performance in conventional PET imaging, it may impact the timing inaccuracy for time-of-flight PET systems (which have higher timing resolution requirements). Using a separate CFD for each PMT would allow for propagation time differences to be removed through calibration and correction in software. In this paper we investigate and quantify the timing resolution achievable when the signal from each of the 4 PMTs is digitized by a separate CFD. Several methods are explored for both obtaining values for the propagation time differences between the PMTs and combining the four arrival times to form a single timing estimator. We find that the propagation time correction factors are best derived through an exhaustive search, and that the ''weighted average'' method provides the best timing estimator. Using these methods, the timing resolution achieved with 4 CFDs (1052 {+-} 82 ps) is equivalent to the timing resolution with the conventional single CFD setup (1067 {+-} 158 ps).
Date: May 5, 2006
Creator: Ullisch, Marcus G. & Moses, William W.
Partner: UNT Libraries Government Documents Department

Analysis of the structure of complex networks at different resolution levels

Description: Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights in the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for a partition of a network into modules. Recently some authors have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows to find the exact splits reported in the literature, as well as the substructure beyond the actual split.
Date: February 28, 2008
Creator: Arenas, A.; Fernandez, A. & Gomez, S.
Partner: UNT Libraries Government Documents Department

Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

Description: This review explores the latest developments in Fourier transform mass spectrometry and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing high resolution mass spectrometry data.
Date: May 25, 2016
Creator: Ghaste, Manoj; Mistrik, Robert & Shulaev, Vladimir
Partner: UNT College of Arts and Sciences

2D spatial gain profiles in multiple-pulse driven Ne-like Ge lasers

Description: In this paper, we present the direct spatial measurement of the two-dimensional gain profiles for the Ne-like Ge 196 Å laser line using a slab target illuminated by the multiple pulse technique. To understand the spatial dependence for Ge plasmas driven by a series of 100 ps pulses 400 ps apart we did a series of Nova experiments backlighting short Ge amplifiers. Two-dimensional, high-resolution, spatial images of the 196 Å laser emission from the output aperture of the amplifiers were measured to determine the spatial position of the gain. The amplifier lengths were chosen to be short enough to avoid the significant refraction effects which have dominated the analysis of previous near field imaging experiments. To assure good temporal overlap, the traveling wave geometry was used to illuminate both the amplifier and backlighter. The amplifier design included a wire fiducial that provided an absolute spatial reference and avoided the usual difficulty of determining the location of the target surface. We compare the measured spatial gain profiles with simulations done using LASNEX, which calculates the hydrodynamic evolution of the plasma, and XRASER, which uses the temperatures and densities from LASNEX to do the gain and kinetics calculations.
Date: September 21, 1998
Creator: Dunn, J; Li, Y; Nilsen, J & Osterheld, A L
Partner: UNT Libraries Government Documents Department

Scaling behavior in interference lithography

Description: Interference lithography is an emerging, technology that provides a means for achieving high resolution over large exposure areas (approximately 1 m{sup 2}) with virtually unlimited depth of field. One- and two-dimensional arrays of deep submicron structures can be created using near i-line wavelengths and standard resist processing. In this paper, we report on recent advances in the development of this technology, focusing, in particular, on how exposure latitude and resist profile scale with interference period We present structure width vs dose curves for periods ranging from 200 nm to 1 um, demonstrating that deep submicron structures can be generated with exposure latitudes exceeding 30%. Our experimental results are compared to simulations based on PROLITIV2.
Date: February 27, 1998
Creator: Agayan, R.R.; Banyai, W.C. & Fernandez, A.
Partner: UNT Libraries Government Documents Department