1,108 Matching Results

Search Results

Advanced search parameters have been applied.

Modeling of geochemical interactions between acidic and neutral fluids in the Onikobe Geothermal Reservoir

Description: Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. One-dimensional models were used to study the geochemical behavior due to mixing of the two fluids. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.
Date: January 10, 2003
Creator: Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu & Pruess, Karsten
Partner: UNT Libraries Government Documents Department

Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

Description: The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.
Date: January 26, 1998
Creator: Phillips, Chris; Moos, Dan; Clarke, Don; Nguyen, John; Tagbor, Kwasi; Koerner, Roy et al.
Partner: UNT Libraries Government Documents Department

Laboratory measurement of sorption in porous media

Description: A new apparatus for measuring steam adsorption-desorption isothermally on rock samples has been installed and initial runs made for rock samples from geothermal reservoirs. The amounts adsorbed measured in these experiments are the same order of magnitude as previous experiments.
Date: January 1, 1992
Creator: Harr, M. S.; Pettit, P. & Ramey, J. J., Jr.
Partner: UNT Libraries Government Documents Department

Breakthrough Time for the Source-Sink Well Doublet

Description: A pressure transient analysis method is presented for interpreting breakthrough time between two constant rate wells. The wells are modeled as two line source wells in an infinite reservoir. The first well injects at a constant rate and the second well produces at a constant rate. We studied the effects of transient pressure conditions on breakthrough time. The first arrival of injected fluid at the production well may be significantly longer under transient condition than under steady state condition. A correlation of the deviation of the breakthrough time for transient pressure conditions from the steady state condition is presented.
Date: January 21, 1986
Creator: Menninger, Will & Sageev, Abraham
Partner: UNT Libraries Government Documents Department

Review of Fenton Hill HDR test results

Description: Results of recent flow testing at Fenton Hill, New Mexico, have been examined in light of their applicability to the development of commercial-scale hot dry rock (HDR) reservoirs at other sites. These test results, obtained during the cumulative 11 months of reservoir flow testing between 1992 and 1995, show that there was no significant production temperature drawdown during this time and that the reservoir flow became more dispersed as flow testing proceeded. Based on these test results together with previous HDR research at Fenton Hill and elsewhere, it is concluded that a three-well geometry, with one centrally located injection well and two production wells-one at each end of the pressure-stimulated reservoir region-would provide a much more productive system for future HDR development than the two-well system tested at Fenton Hill.
Date: January 1, 1997
Creator: Brown, D.
Partner: UNT Libraries Government Documents Department

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

Description: The cooperative agreement for this project was finalized and signed during April 2000. The official project start date was April 11, 2000. Initial reporting requirements, including the completion of a Project Management Plan, Milestone Plan and Log, and a Hazardous Substance Plan, were completed and submitted to the DOE in early May 2000. Work on the project tasks was initiated in May 2000. During the course of this budget period, efforts will focus on enhancing reservoir characterization work that had been in progress prior to the start of this grant project, incorporation of this information into an existing 3-D full-field compositional model, and utilization of a ''window area'' of the model (representing a selected pilot area) to evaluate the impacts of horizontal laterals on recovery in the miscible nitrogen flood. The ''window area'' model will also be used to design the most effective configuration and placement of the lateral sections. The following is a summary of progress made between April 11, 2000 and June 30, 2000.
Date: July 31, 2000
Creator: Muhic, Teresa
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT GENERATION, HIGH RESOLUTION, INTEGRATED RESERVOIR CHARACTERIZATION

Description: Work during this reporting period focused primarily on data processing in support of creation of the broadband transform function. Project participants processed seismic data and calculated attributes on that data, performed log clustering, produced a rock physics model, and completed the creation of the engineering model relating well logs and core data. These elements are essential input for the creation of the broadband transform function.
Date: January 1, 2003
Creator: Reeves, Scott R.
Partner: UNT Libraries Government Documents Department

MAPPING OF RESERVOIR PROPERTIES AND FACIES THROUGH INTEGRATION OF STATIC AND DYNAMIC DATA

Description: Knowledge of the distribution of permeability and porosity in a reservoir is necessary for the prediction of future oil production, estimation of the location of bypassed oil, and optimization of reservoir management. But while the volume of data that can potentially provide information on reservoir architecture and fluid distributions has increased enormously in the past decade, it is not yet possible to make use of all the available data in an integrated fashion. While it is relatively easy to generate plausible reservoir models that honor static data such as core, log, and seismic data, it is far more difficult to generate plausible reservoir models that honor dynamic data such as transient pressures, saturations, and flow rates. As a result, the uncertainty in reservoir properties is higher than it could be and reservoir management can not be optimized. The goal of this project is to develop computationally efficient automatic history matching techniques for generating geologically plausible reservoir models which honor both static and dynamic data. Solution of this problem is necessary for the quantification of uncertainty in future reservoir performance predictions and for the optimization of reservoir management. Facies (defined here as regions of relatively uniform petrophysical properties) are common features of all reservoirs. Because the flow properties of the various facies can vary greatly, knowledge of the location of facies boundaries is of utmost importance for the prediction of reservoir performance and for the optimization of reservoir management. When the boundaries between facies are fairly well known, but flow properties are poorly known, the average properties for all facies can be determined using traditional techniques. Traditional history matching honors dynamic data by adjusting petrophysical properties in large areas, but in the process of adjusting the reservoir model ignores the static data and often results in implausible reservoir models. In general, ...
Date: January 1, 2003
Creator: Reynolds, Albert C.; Oliver, Dean S.; Zhang, Fengjun; Dong, Yannong; Skjervheim, Jan Arild & Liu, Ning
Partner: UNT Libraries Government Documents Department

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Quarterly progress report, July 1, 1995--September 30, 1995

Description: The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed reservoir description using integrated approach. We expect that 2 to 5 % of original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. The project is divided into two stages. In Stage I of the project, we selected part of the Glenn Pool field - Self Unit. We conducted cross bore hole tomography surveys and formation micro scanner logs through newly drilled well. By combining the state of the art data with conventional core and log data, we developed a detailed reservoir description based on integrated approach. After conducting extensive reservoir simulation studies, we evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. We observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Unit. This management plan is currently being implemented and the performance is being monitored. Stage 11 of the project will involve selection of part of the same reservoir (Berryhill Unit - Tract 7), development of reservoir description using only conventional data, simulation of flow performance using developed reservoir description, selection of an appropriate reservoir management plan, and implementation of the plan followed by monitoring of reservoir performance. By comparing the results of two budget periods, we will be able to evaluate the utility of collecting additional data using state-of-the-art technology. In addition, we will also be able to evaluate the application of optimum reservoir management plan in improving secondary recovery performance of ...
Date: December 1, 1995
Creator: Kelkar, B.G.; Liner, C. & Kerr, D.
Partner: UNT Libraries Government Documents Department

Recovery of bypassed oil in the Dundee formation using horizontal drains. Quarterly progress report, October 1, 1995--December 31, 1995

Description: The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced domestically will probably be about 80 to 100 million bbls.
Date: January 29, 1996
Creator: Wood, J.R.
Partner: UNT Libraries Government Documents Department

An example of using oil-production induced microseismicity in characterizing a naturally fractured reservoir

Description: Microseismic monitoring was conducted using downhole geophone tools deployed in the Seventy-Six oil field, Clinton County, Kentucky. Over a 7-month monitoring period, 3237 microearthquakes were detected during primary oil production; no injection operations were conducted. Gross changes in production rate correlate with microearthquake event rate with event rate lagging production-rate changes by about 2 weeks. Hypocenters and first-motion data have revealed low-angle, thrust fracture zones above and below the currently drained depth interval. Production history, well logs and drill tests indicate the seismically-active fractures are previously drained intervals that have subsequently recovered to hydrostatic pressure via brine invasion. The microseismic data have revealed, for the first time, the importance of the low-angle fractures in the storage and production of oil in the study area. The seismic behavior is consistent with poroelastic models that predict slight increases in compressive stress above and below currently drained volumes.
Date: June 1, 1996
Creator: Rutledge, J.T.; Phillips, W.S.; Schuessler, B.K. & Anderson, D.W.
Partner: UNT Libraries Government Documents Department

Research on oil recovery mechanisms in heavy oil reservoirs. Final report

Description: The Research on Heavy Oil Recovery Mechanisms at Stanford University has been ongoing for the past twenty years. During this span of time, 106 technical reports have been published by the Department of Energy, over 200 technical papers have been presented at meetings of professional societies, and most importantly, over 120 students have performed research as graduate research assistants and are now employed by the oil industry or research institutions. Funding was provided by the Department of Energy and also by a group of oil companies. The support of industry is very important to us, not only from the financial viewpoint, but also from the constant exchange of ideas with technical experts from the companies. Meetings are held yearly with industry representatives and informal exchange of information is constant. Support from industry has been steady since 1980. SUPRI personnel is also active in participating in technical meetings and seminars organized by technical societies and other research organizations. We strongly believe that information exchange is one of the most cost effective way to improve research.
Date: August 1, 1996
Partner: UNT Libraries Government Documents Department

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Quarterly report, April 1, 1996--June 30, 1996

Description: This project attempts to demonstrate the effectiveness of exploiting thin-layered, low-energy deposits at the distal margin of a prograding turbidite complex through the use of hydraulically-fractured, horizontal or high-angle wells. The combination of a horizontal or high-angle well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional vertical wells while maintaining vertical communication between thin interbedded layers and the wellbore. A high-angle well will be drilled in the fan margin portion of a slope-basin clastic reservoir and will be completed with multiple hydraulic-fracture treatments. Geologic modeling, reservoir characterization, and fine-grid reservoir simulation will be used to select the well location and orientation. Design parameters for the hydraulic fracture treatments will be determined by fracturing an existing test well. Fracture azimuth will be predicted, in part, by passive seismic monitoring from an offset well during fracture stimulation of the test well.
Date: July 29, 1996
Creator: Niemeyer, B.L.
Partner: UNT Libraries Government Documents Department

Reservoir characterization of Pennsylvanian sandstone reservoirs

Description: The overall objectives of this work are: (i) to investigate the importance of various qualities and quantities of data on the optimization of water flooding performance; and (ii) to study the application of newly developed, geostatistical techniques to analyze available production data to predict future prospects of infill drilling. Specifically to satisfy our first objective, we will study the feasibility of applying fractal geometry concepts to characterize individual formations; develop a three-dimensional conditional simulation program to define reservoir properties at various scales; establish a method to integrate the data collected at various scales including the well test and the core data; and to investigate the utility of outcrop data in describing subsurface reservoir details. To satisfy the second objective, we will investigate various techniques to utilize the production data, including initial potential and the production decline, in proposing a possible location for a future infill well. The techniques investigated will include geostatistical analyses. The study will be restricted to Pennsylvanian sandstones reservoirs commonly found in Oklahoma.
Date: March 1, 1995
Creator: Kelkar, B.G.
Partner: UNT Libraries Government Documents Department

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Quarterly report, July 1, 1996--September 30, 1996

Description: The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed reservoir description using an integrated approach. We expect that 2 to 5% of the original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. The project is divided into two stages. In Stage I of the project, we selected part of the Glenn Pool field - Self Unit. We conducted cross bore hole tomography surveys and formation micro scanner logs through a newly drilled well. By combining the state-of-the-art data with conventional core and log data, we developed a detailed reservoir description based on an integrated approach. After conducting extensive reservoir simulation studies, we evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. We observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Self Unit. This management plan is currently being implemented and the performance is being monitored.
Date: December 31, 1996
Creator: Kelkar, B.G.
Partner: UNT Libraries Government Documents Department

Increasing waterflood reserves in the Wilmington oil field through improved reservoir characterization and reservoir management. Quarterly report, July 1, 1996--September 30, 1996

Description: The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1996, and to report all technical data and findings as specified in the {open_quotes}Federal Assistance Reporting Checklist{close_quotes}. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.
Date: October 28, 1996
Creator: Walker, S.
Partner: UNT Libraries Government Documents Department

Integrated reservoir management in the Carpinteria Offshore Field

Description: The Carpinteria Offshore Field is located near Santa Barbara, California. The State of California owns the portion of the field nearest the coast, and the US Federal Government the portion of the field that lies beyond a statutory three-mile coastal water limit. This mature reservoir has yielded more than 100 million barrels of oil from five platforms in its 30 years of production. The US Department of Energy`s Los Alamos National Laboratory (managed by the University of California) has joined with the State Lands Commission of California, the US Department of Interior`s Minerals Management Service, and the independent operator of the field, Pacific Operators Offshore, Inc., in a unique collaboration to redevelop the field. The reservoir management strategy for the Carpinteria Field relies on a long-term investment in simulation tools and expertise. These technologies and expertise are available to all project participants through a virtual enterprise business model.
Date: December 1998
Creator: Whitney, E. M.; Pawar, R. J. & Kendall, R. P.
Partner: UNT Libraries Government Documents Department

Integrated reservoir management for the long term - the Carpinteria Offshore Field

Description: The Carpinteria Offshore Field, Santa Barbara, California, has produced more than 100 million barrels of oil to date. This mature field has continued operations in an economically and politically challenging environment that finally resulted in the abandonment of the field`s California State leases by the lease holder. The abandoned leases, together with adjoining federal leases are now operated by an independent producer. Los Alamos National Laboratory has joined with that independent operator, Pacific Operators Offshore, and with the State Lands Commission of California and the Minerals Management Service, in a unique collaborative effort to redevelop the mature field. This project is a part of a larger umbrella project, the Advanced Reservoir Management Project (ARM), that is designed to demonstrate the worth of advanced computational tools and state of the art methods for independent oil and gas producers. The Carpinteria Reservoir Redevelopment project takes a long-term view of reservoir management - as a result, our management plan includes a continuing investment in time and technology in order to better understand the reservoir. In particular, we have completed an extensive reservoir characterization and geological modeling effort that has created a self-consistent model, satisfying geophysical, geological, and engineering data constraints. We have begun the engineering-intensive flow simulation phase of the project using the current geological description of the reservoir, and are confident that our careful efforts in geological modeling will result in a reasonable reservoir flow model. Dynamic documents exist that are used by participants to stay abreast of developments on the project.
Date: May 1, 1997
Creator: Whitney, E.M.; Brickey, M.R. & Coombs, S.E.
Partner: UNT Libraries Government Documents Department

Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Summary of project accomplishments; Final report, September 30, 1998

Description: Major accomplishments of this project occurred in three primary categories: (1) fractured reservoir location and characteristics prediction for exploration and production planning; (2) implications of geologic data analysis and synthesis for exploration and development programs; and (3) fractured reservoir production modeling. The results in each category will be discussed in turn. Seven detailed reports have been processed separately.
Date: December 1, 1998
Creator: Ortoleva, P.J.; Sundberg, K.R. & Hoak, T.E.
Partner: UNT Libraries Government Documents Department