73 Matching Results

Search Results

Advanced search parameters have been applied.

CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

Description: The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.
Date: September 1, 1996
Creator: Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J. & Vogt, J.
Partner: UNT Libraries Government Documents Department

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly progress report, June 13, 1996--September 12, 1996

Description: At this time, eighteen (18) 10-acre infill wells have been drilled as part of the Field Demonstration phase of the project. Of the fourteen producing wells drilled to date, twelve are currently on production, and ten are pumped-off and producing at stable rates. Current Unit production is approximately 3,600-3,700 STBO/D, and approximately 850 STBO/D incremental production has been added to date. The remaining producing well and four injection wells are currently being completed. A change in the Statement of Work has been approved so that we can drill additional 10-acre infill wells during the next quarter as budget constraints allow. Production flowlines are laid for each new producing well as they are put on production. Injection lines are being laid for the injection wells as they are completed. All data required for the validation of the Budget Period I Reservoir Characterization, Reservoir Management, and Reservoir Simulation Studies are being acquired and analyzed during the Field Demonstration Period.
Date: September 12, 1996
Partner: UNT Libraries Government Documents Department

Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

Description: Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.
Date: September 1, 1998
Creator: Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G. & Carroll, R.E.
Partner: UNT Libraries Government Documents Department

Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

Description: This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.
Date: September 1, 1992
Creator: Kelkar, M.
Partner: UNT Libraries Government Documents Department

Economic recovery of oil trapped at fan margins using high angle wells and multiple hydraulic fractures. Annual report, September 28, 1995--September 27, 1996

Description: The digital fan margin in the northeast portion of the Yowlumne field contains significant reserves but is not economic to develop using verticle wells. Numerous interbedded shales and deteriorating rock properties limit producibility. In addition, extreme depths (13,000 ft) present a challenging environment for hydraulic fracturing and artificial lift. Lastly, a mature waterflood increases risk because of the uncertainty with size and location of flood fronts. This project attempts to demonstrate the effectiveness of exploiting the distal fan margin of this slope-basin clastic reservoir through the use of a high-angle well completed with multiple hydraulic-fracture treatments. The combination of a high-angle (or horizontal) well and hydraulic fracturing will allow greater pay exposure than can be achieved with conventional verticle wells while maintaining verticle communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three verticle wells are anticipated at one-half to two-thirds the cost.
Date: September 1, 1997
Creator: Niemeyer, B.L.
Partner: UNT Libraries Government Documents Department

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

Description: The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.
Date: September 1, 1997
Partner: UNT Libraries Government Documents Department

Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

Description: The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.
Date: September 7, 2001
Creator: Kovscek, Anthony R.; Brigham, William E. & Castanier, Louis M.
Partner: UNT Libraries Government Documents Department

A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

Description: This report contains eight sections. Some individual subsections contain lists of references as well as figures and conclusions when appropriate. The first section includes the introduction and summary of the first-year project efforts. The next section describes the results of the project tasks: (1) implementation of theoretical relations between effect dispersion and the stochastic medium, (2) imaging analyses using core and well log data, (3) construction of dispersion and attenuation models at the core and borehole scales in poroelastic media, (4) petrophysics and a catalog of core and well log data from Siberia Ridge field, (5) acoustic/geotechnical measurements and CT imaging of core samples from Florida carbonates, and (6) development of an algorithm to predict pore size distribution from NMR core data. The last section includes a summary of accomplishments, technology transfer activities and follow-on work for Phase II.
Date: September 22, 2000
Creator: Parra, Jorge O.; Hackert, Chris L.; Ni, Qingwen & Collier, Hughbert A.
Partner: UNT Libraries Government Documents Department

DOE/FETC GASIS project. Quarterly technical progress report, March 1--May 30, 1998

Description: Progress is summarized for the following tasks: Natural gas reservoir data system development; Technology transfer; Software enhancement; and Supplemental reservoir studies and data collection. GASIS is a national database of geological, engineering, production, and ultimate recovery data for US gas reservoirs.
Date: September 1, 1998
Creator: Hugman, R.H.
Partner: UNT Libraries Government Documents Department

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Second annual technical progress report, October 1, 1996--September 30, 1997

Description: The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shown evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.
Date: September 1, 1998
Partner: UNT Libraries Government Documents Department

Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

Description: The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.
Date: September 30, 1995
Creator: Fotouh, K.H.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project. Technical progress for this quarter are discussed for subsurface and engineering studies.
Date: September 1, 1995
Creator: Morgan, C.D.
Partner: UNT Libraries Government Documents Department

Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, April 1--June 30, 1995

Description: Objective is to integrate advanced geoscience and reservoir engineering concepts to quantify the dynamics of fluid-rock and fluid-fluid interactions as related to reservoir architecture and lithologic characterization. During this period, studies were made of the permeability, wettability, and porosity of the Sulimar Queen Formation.
Date: September 1, 1995
Creator: Martin, F. D.; Buckley, J. S.; Weiss, W. W. & Ouenes, A.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY

Description: The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main performing units were as follows: (1) Data acquisition. (GTI, OIPA, Participating producers.) (2) Development of the virtual intelligence software. (WVU, ISI); (3) Application ...
Date: September 1, 2004
Creator: Salehi, Iraj A.; Mohaghegh, Shahab D. & Ameri, Samuel
Partner: UNT Libraries Government Documents Department

ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES

Description: The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in interviews and in the Workshop, as, perhaps, the key issue related to oil production in the Appalachian region - the price of a barrel of oil. Project ...
Date: September 1, 2003
Creator: McDowell, Ronald R.; Aminian, Khashayar; Avary, Katharine L.; Bocan, John M.; Hohn, Michael Ed. & Patchen, Douglas G.
Partner: UNT Libraries Government Documents Department

Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. [Quarterly report], April 1--June 30, 1995

Description: Objective is to apply artificial intelligence and expert systems to capturing, integrating, and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. Goal is to develop a single expert system for use by small producers and independents to efficiently exploit reservoirs.
Date: September 1, 1995
Creator: Kerr, D.R.; Thompson, L.G. & Shenoi, S.
Partner: UNT Libraries Government Documents Department

DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

Description: The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern ...
Date: September 1, 2002
Creator: Harpole, K.J.; Durrett, Ed G.; Snow, Susan; Bles, J.S.; Robertson, Carlon; Caldwell, C.D. et al.
Partner: UNT Libraries Government Documents Department

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

Description: The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.
Date: September 30, 2002
Creator: Murphy, Mark B.
Partner: UNT Libraries Government Documents Department

INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

Description: Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths and structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.
Date: September 30, 2002
Creator: Luff, Kenneth D.
Partner: UNT Libraries Government Documents Department

Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, Class Revisit

Description: Continued the fault study to find more faults and develop new techniques to visualize them. Data from the Dundee Formation was used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well.
Date: September 24, 2002
Creator: Wood, James R.; Bornhorst, T.J.; Harrison, William B. & Quinlan, W.
Partner: UNT Libraries Government Documents Department

Intelligent Computing System for Reservoir Analysis and Risk Assessment of Red River Formation, Class Revisit

Description: Integrated software was written that comprised the tool kit for the Intelligent Computing System (ICS). The software tools in ICS are for evaluating reservoir and hydrocarbon potential from various seismic, geologic and engineering data sets. The ICS tools provided a means for logical and consistent reservoir characterization. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) combining tools. A flexible approach can be used with the ICS tools. They can be used separately or in a series to make predictions about a desired reservoir objective. The tools in ICS are primarily designed to correlate relationships between seismic information and data obtained from wells; however, it is possible to work with well data alone.
Date: September 24, 2002
Creator: Sippel, Mark A.
Partner: UNT Libraries Government Documents Department

Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984

Description: Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.
Date: September 1, 1984
Creator: Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E. & Miller, F.G.
Partner: UNT Libraries Government Documents Department

Geothermal reservoir engineering research at Stanford University. Third annual report for the period October 1, 1982-September 30, 1983

Description: Progress is reported in the following areas: heat extraction from hydrothermal reservoirs; radon reservoir engineering; well test analysis and bench scale experiments; field applications; workshop, seminars, and technical information; reinjection technology; and seismic monitoring of vapor/liquid interfaces. (MHR)
Date: September 1, 1983
Creator: Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E. & Miller, F.G.
Partner: UNT Libraries Government Documents Department

Geothermal innovative technologies catalog

Description: The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.
Date: September 1, 1988
Creator: Kenkeremath, D. (ed.)
Partner: UNT Libraries Government Documents Department