95 Matching Results

Search Results

Advanced search parameters have been applied.

Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

Description: Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.
Date: January 14, 2003
Creator: Akbari, Hashem
Partner: UNT Libraries Government Documents Department

Growth of thick, crystalline material using dc-magnetron sputtering in Mag1 deposition chamber

Description: We demonstrated dense, non-columnar growth of thick Mo films by moving the substrates in and out of the plasma thus allowing the surface reconstruction and by interrupting the growth with Si layers. The multilayers made this way have very smooth surface, about 1.3 nm rms high spatial frequency roughness, while also maintaining the periodicity of a reflective coating. These preliminary results hint that the surface reconstruction is an important physical process that controls the growth mechanisms. Further studies, combined with theoretical modeling, are essential to further our knowledge on how to predict and control desired microstructure for different materials.
Date: November 2, 2005
Creator: Bajt, S; Alameda, J; Baker, S & Taylor, J S
Partner: UNT Libraries Government Documents Department

Finite element analysis of multilayer coextrusion.

Description: Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Date: September 1, 2011
Creator: Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana et al.
Partner: UNT Libraries Government Documents Department

Multilayer reflective coatings for extreme-ultraviolet lithography

Description: Multilayer mirror coatings which reflect extreme ultraviolet (EUV) radiation are a key enabling technology for EUV lithography. Mo/Si multilayers with reflectances of 67.5% at 13.4 nm are now routinely achieved and reflectances of 70 2% at 11.4 nm were obtained with MO/Be multilayers. High reflectance is achieved with careful control of substrate quality, layer thicknesses, multilayer materials, interface quality, and surface termination. Reflectance and film stress were found to be stable relative to the requirements for application to EUV lithography. The run-to-run reproducibility of the reflectance peak position was characterized to be better than 0.2%, providing the required wavelength matching among the seven multilayer-coated mirrors used in the present lithography system design. Uniformity of coating was improved to better than 0.5% across 150 mm diameter substrates. These improvements in EUV multilayer mirror technology will enable us to meet the stringent specifications for coating the large optical substrates for our next-generation EUV lithography system.
Date: March 10, 1998
Creator: Montcalm, C., LLNL
Partner: UNT Libraries Government Documents Department

Advanced process development for high reflector coatings on solar concentrator panels. Final letter report

Description: Objectives were to develop and demonstrate the manufacturing process for vacuum deposition of low-cost thin-film high reflectance coatings onto large solar concentrator panels; demonstrate thin-film deposition processes for commercialization of this technology by United Solar Technologies (UST); apply reflective coatings to solar concentrator panels for prototype application by UST.
Date: October 1, 1996
Creator: Martin, P.M.; Stewart, C.D.; Bennett, W.D. & Johnston, J.W.
Partner: UNT Libraries Government Documents Department

Paving materials for heat island mitigation

Description: This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.
Date: November 1997
Creator: Pomerantz, M.; Akbari, H.; Chen, A.; Taha, H. & Rosenfeld, A. H.
Partner: UNT Libraries Government Documents Department

ASTM standards for measuring solar reflectance and infrared emittance of construction materials and comparing their steady-state surface temperatures

Description: Numerous experiments on individual buildings in California and Florida show that painting roofs white reduces air conditioning load up to 50%, depending on the thermal resistance or amount of insulation under the roof. The savings, of course, are strong functions of the thermal integrity of a building and climate. In earlier work, the authors have estimated the national energy savings potential from reflective roofs and paved surfaces. Achieving this potential, however, is conditional on receiving the necessary Federal, states, and electric utilities support to develop materials with high solar reflectance and design effective implementation programs. An important step in initiating an effective program in this area is to work with the american Society for Testing and Materials (ASTM) and the industry to create test procedures, rating, and labeling for building and paving materials. A subcommittee of ASTM E06, E06.42, on Cool Construction Materials, was formed as the vehicle to develop standard practices for measuring, rating, and labeling cool construction materials. The subcommittee has also undertaken the development of a standard practice for calculating a solar reflectance index (SRI) of horizontal and low-sloped surfaces. SRI is a measure of the relative steady-state temperature of a surface with respect to a standard white surface (SRI = 100) and a standard black surface (SRI = 0) under standard solar and ambient conditions. This paper discusses the technical issues relating to development of these two ASTM standards.
Date: August 1, 1996
Creator: Akbari, H.; Levinson, R. & Berdahl, P.
Partner: UNT Libraries Government Documents Department

Laser conditioning methods fo hafnia silica multiplayer mirrors

Description: Large aperture multilayer hafnia silica high reflector coatings at 1064 nm, deposited by reactive electron-beam deposition, were prepared to examine different laser conditioning methods for manufacturing high fluence optics in the National Ignition Facility. Laser conditioning is a process where the damage threshold of the coating is increased or the damage that is created is minimized so that it does not grow upon further irradiation. Two laser conditioning methods were examined for coatings deposited from only oxide starting materials. Off-line laser conditioning consists of raster scanning a mirror past a 1 mm diameter Gaussian beam over the entire clear aperture; a process that takes approximately 24 hours per scan. On-line laser conditioning consisted of a large aperture 300 mm x 300 mm beam from the Beamlet laser that irradiated the entire full clear aperture of a series of mirrors; a process that was limited by a 2-4 hour shot rate. In both cases a six-step process was used with the mirror first irradiated at a low fluence, then successively higher fluences increased in equal increments up to the peak laser operating fluence. Mirrors that were only partially laser conditioned damaged catastrophically while fully conditioned mirrors survived fluences exceeding the safe operating Beamlet fluence. An alternative off-line laser conditioning method was examined for coatings deposited from hafnia or metallic hafnium sources. Single-step laser conditioning consists of off-line raster scanning an optic at the peak operating fluence, thus decreasing the laser conditioning cost by reducing the number of scans and required laser conditioning stations to process all the mirrors for the National Ignition Facility. Between pulses the optic is stepped approximately one fourth of the l/e* Gaussian beam diameter so each area of the coating is irradiated by different segments of the beam starting at a low fluence at the outer edge ...
Date: January 6, 1998
Creator: Stolz, C.J.; Sheehan, L.M.; Maricle, S.M. Schwartz, S.; Kozlowski, M.R.; Jennings, R.T. & Hue, J.
Partner: UNT Libraries Government Documents Department

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

Description: The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.
Date: June 1, 1998
Creator: Petrie, T. W. & Childs, P. W.
Partner: UNT Libraries Government Documents Department

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

Description: The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.
Date: February 1, 1997
Creator: Petrie, T.W. & Childs, P.W.
Partner: UNT Libraries Government Documents Department

Lapped substrate for enhanced backsurface reflectivity in a thermophotovoltaic energy conversion system

Description: A method is described for fabricating a thermophotovoltaic energy conversion cell including a thin semiconductor wafer substrate having a thickness ({beta}) calculated to decrease the free carrier absorption on a heavily doped substrate; wherein the top surface of the semiconductor wafer substrate is provided with a thermophotovoltaic device, a metallized grid and optionally an antireflective (AR) overcoating; and, the bottom surface (10 ft) of the semiconductor wafer substrate is provided with a highly reflecting coating which may comprise a metal coating or a combined dielectric/metal coating.
Date: December 31, 1996
Creator: Baldasaro, P.F.; Brown, E.J.; Charache, G.W. & DePoy, D.M.
Partner: UNT Libraries Government Documents Department

X-ray induced damage observations in ZERODUR mirrors

Description: Catastrophic damage has been observed in some ZERODUR mirrors used as first mirrors in two beam lines at the National Synchrotron Light Source (NSLS). Despite the high reflectivity of the coatings used on these mirrors, a significant flux of high energy photons penetrates below the coating and is absorbed in the substrate. Although model calculations indicate that the local temperature does not increase significantly, the authors suspect that over long time periods the absorbed flux produces structural changes in the material, leading to a build-up of surface stress, gross figure changes, and growth of fractures. These changes are probably related to the nature of the two-phase glass-ceramic composition of the ZERODUR material. Metal mirrors and single-phase materials do not exhibit such catastrophic damage under similar exposure conditions.
Date: July 1, 1997
Creator: Takacs, P.Z.; Furenlid, K. & Furenlid, L.
Partner: UNT Libraries Government Documents Department

Final project report - CRADA with United Solar Technologies and Pacific Northwest Laboratory (PNL-021): Thin film materials for low-cost high performance solar concentrators

Description: The objectives of this project were as follows: To develop and evaluate promising low-cost dielectric and polymer-protected thin-film reflective metal coatings to be applied to preformed continuously-curved solar reflector panels to enhance their solar reflectance, and to demonstrate protected solar reflective coatings on preformed solar concentrator panels. The opportunity for this project arose from a search by United Solar Technologies (UST) for organizations and facilities capable of applying reflective coatings to large preformed panels. PNL was identified as being uniquely qualified to participate in this collaborative project.
Date: March 1, 1995
Creator: Martin, P.M.; Affinito, J.D.; Gross, M.E. & Bennett, W.D.
Partner: UNT Libraries Government Documents Department

Quartz substrates for EUVL reticles

Description: A EUVL reticle blank was fabricated on a specially polished quartz blank. The stress-induced distortion of the multilayer coating was unacceptably large. The distortion can be effectively eliminated by coating the backside of the reticle blank with an identical coating. This strategy has the potential to eliminate multilayer induced stress distortion for the reticle blank in a manner which is compatible with the existing reticle fabrication infrastructure.
Date: February 10, 1995
Creator: Kania, D.R.; Weber, F.J.; Vernon, S.P.; Hawryluk, A.; Baker, S.L.; Golub, A.M. et al.
Partner: UNT Libraries Government Documents Department

Experimental investigation of beryllium-based multilayer coatings for extreme ultraviolet lithography

Description: The performance of beryllium-based multilayer coatings designed to reflect light of wavelengths near 11 nm, at normal incidence, is presented. These multilayer coatings are of special interest for extreme ultraviolet lithography (EUVL). The beryllium-based multilayers investigated were Mo/Be, Ru/Be and a new material combination Mo,CiBe. The highest reflectivity achieved so far is 70% at 11.3 mn with 70 bilayers of Mo/Be. However, even though high reflectivity is very important, there are other parameters to satisfy the requirements for an EUVL production tool. Multilayer stress, thermal stability, radiation stability and long term reflectance stability are of equal or greater importance. An experimental characterization of several coatings was carried out to determine the reflectivity, stress, microstructure, and long term stability of these coatings. Theoretically calculated reflectivities are compared with experimental results for different material pairs; differences between experimental and theoretical reflectivities and bandwidths are addressed. Keywords: Extreme ultraviolet (EUV) lithography, reflective coatings, multilayer deposition, beryllium.
Date: July 30, 1999
Creator: Bajit, S.; Behymer, R. D.; Folta, J.; Mirkarimi, P. B.; Montcalm, C.; Wall, M. A. et al.
Partner: UNT Libraries Government Documents Department

Demonstration of energy savings of cool roofs

Description: Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.
Date: June 1998
Creator: Konopacki, S.; Gartland, L.; Akbari, H. & Rainer, L.
Partner: UNT Libraries Government Documents Department

Demonstration of energy savings of cool roofs. Executive summary

Description: The use of dark roofs affects cooling and heating energy use in buildings and the urban climate. At the building scale, dark roofs are heated by the summer sun and thus raise the summertime air-conditioning (a/c) demand. For highly-absorptive (low-albedo) roofs the difference between the surface and ambient air temperatures may be as high as 90 F on a summer afternoon. While for less absorptive (high-albedo) surfaces with similar insulative properties, such as roofs covered with a white coating, the difference is only about 20 F. For this reason, cool roofs (which absorb little insolation) can be effective in reducing cooling energy use. Earlier studies have suggested that cool roofs incur no additional cost if color changes are incorporated into routine re-roofing and re-surfacing schedules. There is a sizable body of measured data (primarily collected for residential sector) documenting energy-saving effects of cool roofs as shown. Both measured data and simulations clearly demonstrate that increasing the albedo of roofs is an attractive (and cost-effective) way of reducing the net radiative heat gains through the roof and hence, reducing building cooling loads. To change the albedo, the rooftops of buildings may be painted with reflective coatings or covered with a new light-colored material. Since most roofs have regular maintenance schedules or need to be re-roofed or re-coated periodically, the change of the albedo should be done then. In that case, the cost would be limited to the incremental cost associated with the high-albedo material. In buildings and climates with significant air-conditioning use, increasing the albedo of roofs will reduce energy use and produce a stream of savings immediately.
Date: June 1998
Creator: Konopacki, S.; Gartland, L.; Akbari, H. & Rainer, L.
Partner: UNT Libraries Government Documents Department

Modeling the effects of reflective roofing

Description: Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.
Date: August 1, 1996
Creator: Gartland, L.M.; Konopacki, S.J. & Akbari, H.
Partner: UNT Libraries Government Documents Department

Reticle blanks for extreme ultraviolet lithography: Ion beam sputter deposition of low defect density Mo/Si multilayers

Description: We report on growth of low defect density Mo/Si multilayer (ML) coatings. The coatings were grown in a deposition system designed for EUVL reticle blank fabrication. Complete, 81 layer, high reflectance Mo/Si ML coatings were deposited on 150 mm dia (100) oriented Si wafer substrates using ion beam sputter deposition. Added defects, measured by optical scattering, correspond to defect densities of 2x10{sup -2}/cm{sup 2}. This represents a reduction in defect density of Mo/Si ML coatings by a factor of 10{sup 5}.
Date: June 24, 1996
Creator: Vernon, S.P.; Kania, D.R.; Kearney, P.A.; Levesque, R.A.; Hayes, A.V.; Druz, B. et al.
Partner: UNT Libraries Government Documents Department

Federal Energy Management Program technical assistance case study: The Forrestal Building relighting project saves $400K annually

Description: The US Department of Energy (DOE) believes energy efficiency begins at home -- in this case the James A. Forrestal Building in Washington, D.C. Since 1969, the 1.7 million-square-foot Forrestal Building has served as DOE Headquarters. In 1989, a team of in-house energy specialists began searching for opportunities to make the Forrestal Building more energy efficient. The team, on which personnel from the Federal Energy Management Program (FEMP) served, identified lighting as an area in which energy use could be reduced substantially. A monitoring program showed that the building`s more than 34,000 1-foot by 4-foot fluorescent lighting fixtures were responsible for 33% of the building`s total annual electric energy use, which represents more than 9 million kilowatt-hours (kWh) per year. In initiating the relighting program, DOE hoped to achieve these broad goals: Reduce energy use and utility bills, and improve lighting quality by distributing the light more uniformly. Funding was also an important consideration. DOE sought financing alternatives through which the lighting retrofit is paid for without using government-appropriated capital funds. DOE cut lighting costs more than 50% and paid for the project with the money saved on energy bills.
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Assessment of replicated optics technology. Final report

Description: This document summarizes the activities performed at MATRA-DEFENSE. Contractual deliverables were samples of optical coatings, diameter 50mm. Some were polished silica substrates, classically coated with a multi-dielectric (reflective) coating; others were obtained via replication from a coated master. Also, a preliminary cost analysis was performed, to identify the manufacturing and components costs required for application of replicated optical components to large KrF laser systems.
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Light-trapped interconnected, Silicon-Film{trademark} modules. Annual technical status report, 18 November 1995--18 November 1996

Description: AstroPower is developing a module-manufacturing technology based on a film-silicon technology. AstroPower, as a Technology Partner in the Thin-Film PV Partnership, is employing its Silicon-Film{trademark} technology to develop an advanced thin-silicon-based product. This module will combine the design and process features of the most advanced thin-silicon solar cells with light-trapping. These cells will be integrated into a low-cost interconnected array. During the second year of the 3-year project, AstroPower`s emphasis was on developing key submodule fabrication processes. Key results of the work include developing a new thin-film growth concept process based on attaching the low-cost substrate to the thin silicon layer after film growth; developing a new technique to achieve light-trapping in thin layers of silicon based on pigmented high-temperature glass materials; and developing key submodule fabrication processes, including contact grid design, subelement isolation, and screen-printed interconnection.
Date: February 1, 1997
Creator: Hall, R.B.; Rand, J.A.; Cotter, J.E. & Ford, D.H.
Partner: UNT Libraries Government Documents Department

Progress toward achieving a commercially viable solar reflective material

Description: Solar thermal technologies use large mirrors to concentrate sunlight for renewable power generation. The development of advanced reflector materials is important to the viability of electricity production by solar thermal energy systems. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes under severe outdoor environments. Production processes associated with candidate materials must be scalable to mass production techniques. A promising low-cost construction uses a stainless steel foil substrate with a silver reflective layer protected by an optically transparent oxide topcoat. Thick (2 to 4 micron), dense alumina coatings provide durable protective layers. The excellent performance of alumina-coated reflector materials in outdoor and accelerated testing suggests that a larger field trial of the material is warranted. The key to producing a greater quantity of material for field deployment and testing without incurring substantial capital is the use of a chilled drum coater. An existing chamber is being modified, and the deposition rate will be increased prior to the installation of a drum coater to produce 1-ft wide by 10-ft long strips of solar reflector material. The production and performance of these materials are discussed.
Date: June 1, 1998
Creator: Kennedy, C.E. & Smilgys, R.V.
Partner: UNT Libraries Government Documents Department

Fatigue expectations in a molybdenum/silicon multilayer under pulsed soft X-ray radiation

Description: The temperature rise in a Mo/a-Si multilayer x-ray reflective film due to radiation absorption is modeled for the first condenser mirror in a projection lithography system such as the one designed by the Advanced Microtechnology Program at LLNL. The radiation load is pulsed at 1000 Hz with a time average intensity of 500mW/cm{sup 2}. This intensity is the expected maximum on the first condenser mirror. The temperature rise is calculated using the integral transform technique. The film is assumed to have the thermal properties of its poorly conducting substrate, yielding a more conservative (higher) temperature estimate. The surface temperature rise is found to range between 35.6{degrees}C and 76.3{degrees}C. The stress due to this rise is greatest in the molybdenum film and ranges between 73MPa and 166MPa compressive. This fluctuating stress level, however, is believed to be insufficient, by a factor of five or so, to cause fatigue failure of the film.
Date: January 19, 1995
Creator: Weber, F.J.; Kassner, M.E. & Stearns, D.G.
Partner: UNT Libraries Government Documents Department