3,952 Matching Results

Search Results

Advanced search parameters have been applied.

Waste management safeguards project: History of and recommendations for development activities in support of safeguards of final disposal of spent fuel

Description: Coordinated safeguards assessment and development activities in support of the U.S. Civilian Radioactive Waste Management System (CRWMS) and international safeguards objectives were initiated in Fiscal Year 1987. Initial technical support activities were performed at the direction of the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM); however, as the priority of support activities changed, direction for the support tasks was transferred to the U.S. Department of State (State), the DOE Office of Arms Control and Nonproliferation (DOE/IS-40), and the U.S. Nuclear Regulatory Commission (NRC). The direction for technical support activities was established at the International Atomic Energy Agency`s (IAEA`s) advisory group meeting and subsequent consultants` meetings on safeguards related to the final disposal of nuclear material contained in waste and spent fuel. Task directions for the development of international safeguards in support of the final disposal of spent fuel are currently being provided by DOE/IS-40. A summary of safeguards activities performed by the Waste Management Safeguards Project is provided. Systems for design information verification for spent fuel consolidation and conditioning operations are needed immediately. Safeguards approaches for maintaining continuity of knowledge of spent fuel processed at the conditioning facility and for verification of the final disposal package will be needed within three years. Systems for design information verification of the repository facilities will be needed by the end of the decade.
Date: February 16, 1994
Creator: Moran, B.W.
Partner: UNT Libraries Government Documents Department

Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

Description: (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.
Date: March 1, 1996
Creator: Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J. et al.
Partner: UNT Libraries Government Documents Department

Vitrification of Simulated Fernald K-65 Silo Waste at Low Temperature

Description: Vitrification is the technology that has been chosen to solidify approximately 18,000 tons of geologic mill tailings, designated as K-65 wastes, at the Fernald Environmental Management Project (FEMP) in Fernald, Ohio. The glass formula developed in this study for the FEMP wastes is a lithia substituted soda-lime-lithia-silica (SLLS) composition which melts at 1050 degrees Celsius. Low melting formulations minimize volatilization of hazardous species such as arsenic, selenium, chromium, and lead during vitrification. Formulation in the SLLS system avoids problematic phase separation known to occur in the MO-B2O3-SiO2 glass forming system (where MO = CaO, MgO, BaO, and PbO which are all constituents of the FEMP wastes). The SLLS glass passed the Environmental Protection Agency (EPA) Toxic Characteristic Leach Procedure (TCLP) for all the hazardous constituents of concern under the current regulations. The SLLS glass is as durable as the high melting soda-lime-silica glasses and is more durable than the borosilicate glasses previously developed for the K-65 wastes. Optimization of glass formulations in the SLLS glass forming system should provide glasses which will pass the newly promulgated Universal Treatment Standards which take effect of August 28, 1998.
Date: July 7, 1998
Creator: Jantzen, C.M. & Pickett, J.B.
Partner: UNT Libraries Government Documents Department

Statistical Review of Data from DWPF's Process Samples for Batches 19 Through 30

Description: The measurements derived from samples taken during the processing of batches 19 through 30 at the Defense Waste Processing Facility (DWPF) affords an opportunity for review and comparisons. This report has looked at some of the statistics from these data. Only the data reported by the DWPF lab (that is, the data provided by the lab as representative of the samples taken) are available for this analysis. In some cases, the sample results reported may be a subset of the sample results generated by the analytical procedures. A thorough assessment of the DWPF lab's analytical procedures would require the complete set of data. Thus, the statistics reported here, specifically, as they relate to analytical uncertainties, are limited to the reported data for these samples, A fell for the consistency of the incoming slurry is the estimation of the components of variation for the Sludge Receipt and Adjustment Tank (SRAT) receipts. In general, for all of the vessels, the data from batches after 21 show smaller batch-to-batch variation than the data from all the batches. The relative contributions of batch-to-batch versus residual, which includes analytical, are presented in these analyses.
Date: April 6, 1999
Creator: Edwards, T.B.
Partner: UNT Libraries Government Documents Department

Plutonium Immobilization Can Loading Equipment Review

Description: This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations.
Date: May 1998
Creator: Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R. et al.
Partner: UNT Libraries Government Documents Department

Plutonium Immobilization Can Loading Concepts

Description: The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.
Date: May 1998
Creator: Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R. et al.
Partner: UNT Libraries Government Documents Department

Salt waste volume reduction by sodium removal

Description: A literature searcha nd preliminary experiments were carried out to determine the feasibility of reducing salt waste volumes by the removal of sodium and purifying the sodium as metal for reuse or less restricted storage for use in the long-term storage of Hanford's radioactive salt waste. Included in the experimental part of the study were oxalate precipitation of sodium, preparation of chloride feed for ecletrolysis, denitration experiments, carbon reduction of sodium-cesium compounds, and distillation of sodium metal for decontamination. Eaeh of these steps was found tn be feasible, but mans problems exist. The most favorable process probable includes: evaporation and denitratipn (possibly preceded be a scavenging precipitatioal, reduction with carbon and distillation or sodium metal from the reaction mixture at low pressures, and purification of sodium metal be filtration and distillaton. At alternative to the first step might be oxalate precipitaton of the sodium. Considerable development work remains before at integrated process could be demonstrated. (auth)
Date: September 15, 1973
Creator: Burger, L.L.; Ryan, J.L.; Swanson, J.L. & Bray, L.A.
Partner: UNT Libraries Government Documents Department