329 Matching Results

Search Results

Advanced search parameters have been applied.

DOE 2008 Occupational Radiation Exposure October 2009

Description: A major priority of the U.S. Department of Energy (DOE) is to ensure the health, safety, and security of DOE employees, contractors, and subcontractors. The Office of Health, Safety and Security (HSS) provides the corporate-level leadership and strategic vision necessary to better coordinate and integrate health, safety, environment, security, enforcement, and independent oversight programs. One function that supports this mission is the DOE Corporate Operating Experience Program that provides collection, analysis, and dissemination of performance indicators, such as occupational radiation exposure information. This analysis supports corporate decision-making and synthesizes operational information to support continuous environment, safety, and health improvement across the DOE complex.
Date: October 1, 2009
Creator: U.S. Department of Energy, Office of Health, Safety and Security
Partner: UNT Libraries Government Documents Department

Polyethylene as a Radiation Shielding Standard in Simulated Cosmic-Ray Environments

Description: Radiation risk management for human space missions dependson accurate modeling of high-energy heavy ion transport in matter. Theprocess of nuclear fragmentation can play a key role in reducing both thephysical dose and the biological effectiveness of the radiationencountered in deep space. Hydrogenous materials and light elements areexpected to be more effective shields against the deleterious effects ofGalactic Cosmic Rays (GCR) than aluminum, which is used in currentspacecraft hulls. NASA has chosen polyethylene, CH2, as the referencematerial for accelerator-based radiation testing of multi-functioncomposites that are currently being developed. A detailed discussion ofthe shielding properties of polyethylene under a variety of relevantexperimental conditions is presented, along with Monte Carlo simulationsof the experiments and other Monte Carlo calculations in which the entireGCR flux is simulated. The Monte Carlo results are compared to theaccelerator data and we assess the usefulness of 1 GeV/amu 56Fe as aproxy for GCR heavy ions. We conclude that additional accelerator-basedmeasurements with higher beam energies would be useful.
Date: August 19, 2006
Creator: Guetersloh, Stephen B.; Zeitlin, Cary; Heilbronn, Lawrence H.; Miller, Jack; Komiyama, Tatsudo; Fukumura, A. et al.
Partner: UNT Libraries Government Documents Department

MINOR PARAMETERS NEEDED FOR INDIVIDUAL-DOSE CALCULATIONS: Final Report for Tasks 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, and 9.3

Description: This brief report documents the selection of parameters needed to support individual-dose calculations from 131I released into the environment with gaseous effluents from the Mayak Production Association.
Date: October 23, 2009
Creator: Anspaugh, L. R. & Napier, Bruce A.
Partner: UNT Libraries Government Documents Department

RECONSTRUCTION OF DOSE TO THE RESIDENTS OF OZERSK FROM THE OPERATION OF THE MAYAK PRODUCTION ASSOCIATION: 1948-2002: Progress Report on Project 1.4

Description: This Progress Report for Project 1.4 of the U.S.–Russia Joint Coordinating Committee on Radiation Effects Research continues in the abbreviated format of providing details only on the work accomplished during this six-month reporting period.
Date: October 23, 2009
Creator: Mokrov, Y.; Rovny, Sergey I.; Anspaugh, L. R. & Napier, Bruce A.
Partner: UNT Libraries Government Documents Department

Diagnostic beam absorber in Mu2e beam line

Description: Star density, hadron flux, and residual dose distributions are calculated around the {mu}2e diagnostic beam absorber. Corresponding surface and ground water activation, and air activation are presented as well.
Date: March 1, 2011
Creator: Rakhno, Igor
Partner: UNT Libraries Government Documents Department

Potential dose distributions at proposed surface radioactvity clearance levels resulting from occupational scenarios.

Description: The purpose of this report is to evaluate the potential dose distribution resulting from surface radioactivity, using occupational radiation exposure scenarios. The surface radioactivity clearance values considered in this analysis may ultimately replace those currently specified in the U.S. Department of Energy (DOE) requirements and guidance for radiological protection of workers, the public and the environment. The surface contamination values apply to radioactive contamination deposited on a surface (i.e., not incorporated into the interior of the material). For these calculations, the dose coefficients for intake of radionuclides were taken from ICRP Publication 68 (ICRP 1994), and external exposure dose coefficients were taken from the compact disc (CD) that accompanied Federal Guidance Report (FGR) 13 (Eckerman et al. 1999). The ICRP Publication 68 dose coefficients were based on ICRP Publication 60 (ICRP 1990) and were used specifically for worker dose calculations. The calculated dose in this analysis is the 'effective dose' (ED), rather than the 'effective dose equivalent' (EDE).
Date: August 2, 2011
Creator: Kamboj, S.; Yu, C. & Rabovsky, J.
Partner: UNT Libraries Government Documents Department

Treatment of patient-dependent beam modifiers in photon treatments by the Monte Carlo dose calculation code PEREGRINE

Description: The goal of the PEREGRINE Monte Carlo Dose Calculation Project is to deliver a Monte Carlo package that is both accurate and sufficiently fast for routine clinical use. One of the operational requirements for photon-treatment plans is a fast, accurate method of describing the photon phase-space distribution at the surface of the patient. The open-field case is computationally the most tractable; we know, a priori, for a given machine and energy, the locations and compositions of the relevant accelerator components (i.e., target, primary collimator, flattening filter, and monitor chamber). Therefore, we can precalculate and store the expected photon distributions. For any open-field treatment plan, we then evaluate these existing photon phase-space distributions at the patient`s surface, and pass the obtained photons to the dose calculation routines within PEREGRINE. We neglect any effect of the intervening air column, including attenuation of the photons and production of contaminant electrons. In principle, for treatment plans requiring jaws, blocks, and wedges, we could precalculate and store photon phase-space distributions for various combinations of field sizes and wedges. This has the disadvantage that we would have to anticipate those combinations and that subsequently PEREGRINE would not be able to treat other plans. Therefore, PEREGRINE tracks photons through the patient-dependent beam modifiers. The geometric and physics methods used to do this are described here. 4 refs., 8 figs.
Date: March 1, 1997
Creator: Schach von Wittenau, A.E.; Cox, L.J.; Bergstrom, P.M. Jr.; Hornstein, S.M.; Mohan, R.; Libby, B. et al.
Partner: UNT Libraries Government Documents Department

Radiation levels in the SSC interaction regions

Description: The radiation environment in a typical SSC detector has been evaluated using the best available particle production models coupled with Monte Carlo simulations of hadronic and electromagnetic cascades. The problems studied include direct charged particle dose, dose inside a calorimeter from the cascades produced by incident photons and hadrons, the flux of neutrons and photons backscattered from the calorimeter into a central cavity, and neutron flux in the calorimeter. The luminosity lifetime at the SSC is dominated by collision losses in the interaction regions, where the luminosity is equivalent to losing an entire full-energy proton beam into the apparatus every six days. The result of an average p-p collision can be described quite simply. The mean charged multiplicity is about 110, and the particles are distributed nearly uniformly in pseudorapidity ({eta}) over all the angles of interest. The transverse momentum distribution is independent of angle, and for our purposes may be written as p{perpendicular}exp(-p{perpendicular}/{beta}). The mean value of p{perpendicular} may be as high as 0.6 GeV/c. Most of the radiation is produced by the very abundant low-p{perpendicular} particles. The dose or neutron fluence produced by individual particles in this energy region are simulated over a wide variety of conditions, and several measurements serve to confirm the simulation results. In general, the response (a dose, fluence, the number of backscattered neutrons, etc.) for an incident particle of momentum p can be parameterized in the form Np{sup {alpha}}, where 0.5 < {alpha}< 1.0. The authors believe most of their results to be accurate to within a factor of two or three, sufficiently precise to serve as the basis for detailed designs.
Date: June 10, 1988
Creator: Groom, D.E.
Partner: UNT Libraries Government Documents Department

APPLICATION OF PRINCIPAL COMPONENT ANALYSIS TO RELAXOGRAPHIC IMAGES

Description: Standard analysis methods for processing inversion recovery MR images traditionally have used single pixel techniques. In these techniques each pixel is independently fit to an exponential recovery, and spatial correlations in the data set are ignored. By analyzing the image as a complete dataset, improved error analysis and automatic segmentation can be achieved. Here, the authors apply principal component analysis (PCA) to a series of relaxographic images. This procedure decomposes the 3-dimensional data set into three separate images and corresponding recovery times. They attribute the 3 images to be spatial representations of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) content.
Date: May 22, 1999
Creator: STOYANOVA,R.S.; OCHS,M.F.; BROWN,T.R.; ROONEY,W.D.; LI,X.; LEE,J.H. et al.
Partner: UNT Libraries Government Documents Department

Genomic Instability Induced by Low Dose Irradiation

Description: The goal of this project was to determine if genomic instability could be initiated by poorly repaired DNA damage induced by low doses of ionizing radiation leading to a mutator phenotype. Human cells were irradiated, then transfected with an unirradiated reporter gene at various times AFTER exposure. The vector carried an inactive GFP gene that fluoresced when the gene was activated by a delayed mutation. Fluorescent cells were measured in the interval of 50 hours to four days after transfection. The results showed that delayed mutations occurred in these cells after exposure to relatively low doses (0.3-1.0 Gy) of low or high ionizing radiation, as well as after treatment with hyrodgen peroxide (30-100 micromolar). The occurrence was both dose and time dependent, often decreasing at higher doses and later times. No marked difference was observed between the response of mis-match repair-proficient and -deficient cell lines. Although the results were quite reproducible within single experiments, difficulties were observed from experiment to experiment. Different reagents and assays were tested, but no improvement resulted. We concluded that this method is not sufficiently robust or consisent to be useful in the assay of the induction of genomic instability by low doses of radiation, at least in these cell lines under our conditions.
Date: July 15, 2006
Creator: Evans, Helen H. Sedwick, David W. Veigl, Martina L.
Partner: UNT Libraries Government Documents Department