35 Matching Results

Search Results

Advanced search parameters have been applied.

Surface Sediments in Precooler Ponds 2, 4, and 5: March 2000

Description: Pond 2, Pond 4, and Pond 5 are inactive reactor cooling impoundments built in 1961 on the R-Reactor Effluent System in the east-central portion of the Department of Energy's Savannah River Site in Aiken, South Carolina. These precooler ponds are part of the Par Pond cooling water system and are considered part of the Par Pond operable unit. The intent was not to characterize the ponds, but to identify the maximum levels of contamination that could be exposed if the ponds are drained to remove the danger of dam failure.
Date: January 29, 2001
Creator: Dunn, D.L.
Partner: UNT Libraries Government Documents Department

R Reactor seepage basins soil moisture and resistivity field investigation using cone penetrometer technology, Savannah River Site, Aiken, South Carolina

Description: The focus of this report is the summer 1999 investigation of the shallow groundwater system using cone penetrometer technology characterization methods to determine if the water table is perched beneath the R Reactor Seepage Basins (RRSBs).
Date: February 17, 2000
Creator: Harris, M.K.
Partner: UNT Libraries Government Documents Department

Par Pond vegetation status 1996

Description: The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into the early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.
Date: December 1, 1996
Creator: Mackey, H.E. Jr. & Riley, R.S.
Partner: UNT Libraries Government Documents Department

Par Pond vegetation status Summer 1995 -- June survey descriptive summary

Description: The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments have been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.
Date: June 1, 1995
Creator: Mackey, H.E. Jr. & Riley, R.S.
Partner: UNT Libraries Government Documents Department

Par Pond vegetation status Summer 1995 -- October survey descriptive summary

Description: The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.
Date: November 1, 1995
Creator: Mackey, H.E. Jr. & Riley, R.S.
Partner: UNT Libraries Government Documents Department

Par Pond vegetation status Summer 1995 -- September survey descriptive summary

Description: The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this mid-September survey. Communities similar to the pre-drawdown Par Pond aquatic plant communities are becoming re-established; especially, beds of maidencane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys during the late growing seasons of 1995, and throughout 1996 and 1997, along with the evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.
Date: September 1, 1995
Creator: Mackey, H.E. Jr. & Riley, R.S.
Partner: UNT Libraries Government Documents Department

Par Pond vegetation status Summer 1995 -- Summary

Description: The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.
Date: January 1996
Creator: Mackey, H. E., Jr. & Riley, R. S.
Partner: UNT Libraries Government Documents Department

Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

Description: The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.
Date: December 6, 2000
Creator: Pickett, J.B.
Partner: UNT Libraries Government Documents Department

Par Pond phytoplankton in association with refilling of the pond: Final Report for sampling from February 1995 -- September 1996

Description: This report describes the results of phytoplankton analyses from Par Pond samples collected between February 1995 and September 1996. The principal objective of the study was to determine the effect of refilling of Par Pond following repair of the dam on the phytoplankton community. Algal blooms are often responsible for fish kills and other detrimental effects in ponds and lakes, and it was postulated that decaying vegetation from formerly exposed sediments might trigger algal blooms that could result in fish kills in Par Pond following the refill. Sporadic algal blooms involving blue-green algae were detected, especially during the summer of 1996. However, the data derived from the study demonstrates that overall, the refilling effort caused no significant negative impact to the pond attributable to phytoplankton dynamics.
Date: December 31, 1996
Creator: Wilde, E.W.; Johnson, M.A. & Cody, W.C.
Partner: UNT Libraries Government Documents Department

Results of Aquifer Tests Performed Near R-Area, Savannah River Site

Description: The aquifer testing described in this report was conducted in response to USEPA comments (WSRC, 1998) on the Rev. 0 R-Reactor Seepage Basins RFI/RI Report (WSRC, 1998a), Appendix G, Groundwater Contaminant Transport Modeling for the R-Reactor Seepage Basins (RRSB)/108-4R Overflow Basin Operable Unit. The R-area regional flow model described in Appendix G of the RFI/RI is based on small-scale and/or indirect measures of hydraulic conductivity, including laboratory tests, slug tests, cone penetration testing (CPT) and lithologic core descriptions. The USEPA proposed and SRS- agreed that large-scale conductivity estimates from multiple well pumping tests would be beneficial for validating the model conductivity field. Overall, the aquifer test results validate the 1998 R-area regional groundwater flow model.
Date: January 31, 2001
Creator: Hiergesell, R.A.
Partner: UNT Libraries Government Documents Department

Sorption kinetics of Cs and Sr in sediments of a Savannah River Site reservoir

Description: Laboratory measurements of the sorption and desorption of {sup 134}Cs and {sup 85}Sr to sediments were conducted. These sediments were sampled from the profundal zone of Par Pond at the Savannah River Site, Aiken, South Carolina. The isotopes {sup 134}Cs and {sup 85}Sr were used to trace the sorption properties of the main contaminants found in the reservoir which are {sup 137}Cs and {sup 90}Sr respectively. The sorption behavior of these two elements was studied using spiked sediment/water slurries of a known mass to volume ratio. The results reveal that Sr undergoes significant reversible sorption while a fraction of Cs irreversibly sorbs to the sediment. The calculated distribution coefficient Kd at equilibrium was (3 {+-} 0.6) x 10{sup 3} for {sup 134}Cs after 60 d and (1 {+-} 0.2) x 10{sup 3} for {sup 85}Sr after 7 d at pH {approx} 6 and slurry ratio of 1:1000 g/ml. The K{sub d} for {sup 134}Cs ranged from 2 x 10{sup 2} to 3 x 10{sup 4} depending on pH and conductivity. The {sup 85}Sr reached equilibrium in a few days, while {sup 134}Cs reached an apparent equilibrium in 1--2 months. The K{sub d} for {sup 134}Cs was a function of the slurry ratio, pH, conductivity, and contact time. These factors were interrelated since the sediments released ions to the slurry mixture which decreased the pH and increased the conductivity. A sorption isotherm measured for {sup 134}Cs was linear at water concentrations from 60 mBq/ml to 20 Bq/ml. A kinetic model was proposed to describe the basic sorption of {sup 134}Cs to Par Pond sediments under homogeneous laboratory conditions.
Date: July 1, 1997
Creator: Stephens, J.A.
Partner: UNT Libraries Government Documents Department

Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

Description: The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research in this area, which focuses on identifying the sources and fate of environmental contaminants and on ...
Date: June 30, 2002
Creator: Paul M. Bertsch, (Director)
Partner: UNT Libraries Government Documents Department

ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING GROUTING OPERATIONS IN THE R- AND P-REACTOR VESSELS

Description: The R- and P-reactor buildings were retired from service and are now being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of immobilizing contaminated components and structures in a grout-like formulation. Aluminum corrodes very rapidly when it comes in contact with the alkaline grout materials and as a result produces hydrogen gas. To address this potential deflagration/explosion hazard, the Materials Science and Technology Directorate (MS&T) of the Savannah River National Laboratory (SRNL) has been requested to review and evaluate existing experimental and analytical studies of this issue to determine if any process constraints on the chemistry of the fill material and the fill operation are necessary. Various options exist for the type of grout material that may be used for D&D of the reactor vessels. The grout formulation options include ceramicrete (pH 6-8), low pH portland cement + silica fume grout (pH 10.4), or Portland cement grout (pH 12.5). The assessment concluded that either ceramicrete or the silica fume grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters does not provide a significant margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. It is recommended that this grout not be utilized for this task. The R-reactor vessel contains significantly less aluminum and thus a Portland cement grout may be considered as well. For example, if the grout fill rate is less than 1 inch/min and the grout temperature is maintained at 70 C or less, the risk of hydrogen accumulation in the R-reactor vessel is very low for ...
Date: December 29, 2009
Creator: Wiersma, B.
Partner: UNT Libraries Government Documents Department

Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

Description: Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.
Date: April 1, 2002
Creator: Matthews, Michael A.; David A. Bruce,; Davis, Thomas A.; Thies, Mark C.; Weidner, John W. & White, Ralph E.
Partner: UNT Libraries Government Documents Department

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

Description: The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information ...
Date: December 3, 2009
Creator: Langton, C.; Blankenship, J.; Griffin, W. & Serrato, M.
Partner: UNT Libraries Government Documents Department

ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING DEACTIVATION AND DECOMMISSIONING OF REACTOR VESSELS AT THE SAVANNAH RIVER SITE

Description: The R- and P-reactor vessels at the Savannah River Site (SRS) are being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of physically isolating and stabilizing the reactor vessel by filling it with a grout material. The reactor vessels contain aluminum alloy materials, which pose a concern in that aluminum corrodes rapidly when it comes in contact with the alkaline grout. A product of the corrosion reaction is hydrogen gas and therefore potential flammability issues were assessed. A model was developed to calculate the hydrogen generation rate as the reactor is being filled with the grout material. Three options existed for the type of grout material for D&D of the reactor vessels. The grout formulation options included ceramicrete (pH 6-8), a calcium aluminate sulfate (CAS) based cement (pH 10), or Portland cement grout (pH 12.4). Corrosion data for aluminum in concrete were utilized as input for the model. The calculations considered such factors as the surface area of the aluminum components, the open cross-sectional area of the reactor vessel, the rate at which the grout is added to the reactor vessel, and temperature. Given the hydrogen generation rate, the hydrogen concentration in the vapor space of the reactor vessel above the grout was calculated. This concentration was compared to the lower flammability limit for hydrogen. The assessment concluded that either ceramicrete or the CAS grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters did not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. Therefore, it ...
Date: November 10, 2010
Creator: Wiersma, B.; Serrato, M. & Langton, C.
Partner: UNT Libraries Government Documents Department

CONSIDERATIONS FOR GROUT FORMULATIONS FOR FACILITY CLOSURES USING IN SITU STRATEGIES

Description: The U.S. Department of Energy (DOE) is conducting in situ closures (entombment) at a large number of facilities throughout the complex. Among the largest closure actions currently underway are the closures of the P and R Reactors at the Savannah River Site (SRS), near Aiken, South Carolina. In these facilities, subgrade open spaces are being stabilized with grout; this ensures the long term structural integrity of the facilities and permanently immobilizes and isolates residual contamination. The large size and structural complexity of these facilities present a wide variety of challenges for the identification and selection of appropriate fill materials. Considerations for grout formulations must account for flowability, long term stability, set times, heat generation and interactions with materials within the structure. The large size and configuration of the facility necessitates that grout must be pumped from the exterior to the spaces to be filled, which requires that the material must retain a high degree of flowability to move through piping without clogging while achieving the required leveling properties at the pour site. Set times and curing properties must be controlled to meet operations schedules, while not generating sufficient heat to compromise the properties of the fill material. The properties of residual materials can result in additional requirements for grout formulations. If significant quantities of aluminum are present in the facility, common formulations of highly alkaline grouts may not be appropriate because of the potential for hydrogen generation with the resultant risks. SRS is developing specialized inorganic grout formulations that are designed to address this issue. One circum-neutral chemical grout formulation identified for initial consideration did not possess the proper chemical characteristics, having exceptionally short set times and high heat of hydration. Research efforts are directed toward developing grout formulations that can meet operational requirements for chemical compatibility, extended set times ...
Date: August 25, 2010
Creator: Gladden, J.; Serrato, M.; Langton, C.; Long, T.; Blankenship, J.; Hannah, G. et al.
Partner: UNT Libraries Government Documents Department

Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS

Description: This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.
Date: February 26, 2002
Creator: Pickett, J. B.; Austin, W. E. & Dukes, H. H.
Partner: UNT Libraries Government Documents Department

Par Pond water balance

Description: A water budget for the Par Pond hydrologic system was established in order to estimate the rate of groundwater influx to Par Pond. This estimate will be used in modeling exercises to predict Par Pond reservoir elevation and spillway discharge in the scenario where Savannah River water is no longer pumped and discharged into Par Pond. The principal of conservation of mass was used to develop the water budget, where water inflow was set equal to water outflow. Components of the water budget were identified, and the flux associated with each was determined. The water budget was considered balanced when inflow and outflow summed to zero. The results of this study suggest that Par Pond gains water from the groundwater system in the upper reaches of the reservoir, but looses water to the groundwater system near the dam. The rate of flux of groundwater from the water table aquifer into Par Pond was determined to be 13 cfs. The rate of flux from Par Pond to the water table aquifer near the dam was determined to be 7 cfs.
Date: June 1996
Creator: Hiergesell, R. A. & Dixon, K. L.
Partner: UNT Libraries Government Documents Department

Proposed Plan for the R-Area Bingham Pump Outage Pits (643-8G, -9G, -10G) and R-Area Unknown Pits No.1, No.2, No.3 (RUNK-1, -2, -3)

Description: The purpose of this proposed plan is to describe the preferred remedial alternative for the R-Area Bingham Pump Outage Pits (R BPOPs) and the R-Area Unknowns (RUNKs) operable unit (OU) and to provide for public involvement in the decision-making process.
Date: July 31, 2002
Creator: Mundy, S.
Partner: UNT Libraries Government Documents Department

Electromagnetic Borehole Flowmeter Testing in R-Area

Description: Six constant-rate, multiple-well aquifer tests were recently conducted in R-area to provide site-specific in situ hydraulic parameters for assessing groundwater flow and contaminant transport models of R-Reactor Seepage Basins (RRSB) plume migration and RRSB remedial alternatives. The pumping tests were performed in the Upper Three Runs and Gordon aquifers between December 1999 and February 2000. The tests provide reliable estimates of horizontal conductivity averaged over aquifer thickness, and a relatively large horizontal zone of influence. To complement these results, Electromagnetic Borehole Flowmeter (EBF) testing was subsequently performed to determine the vertical variation of horizontal conductivity for RPC-2PR, RPC-3PW, RPT-2PW, RPT-3PW, RPT-4PW and RPT-30PZ. The EBF data generally indicate significant aquifer heterogeneity over the tested screen intervals (Figures 14, 16-18, 20, 22, 24, 26 and 27-31). The vertical variation of groundwater flow in or out of the well screen under ambient conditions was also measured (Figures 13, 15, 19, 21, 23 and 25). These data have implications for contaminant monitoring.
Date: October 12, 2000
Creator: Flach, G.P.
Partner: UNT Libraries Government Documents Department