3 Matching Results

Search Results

Advanced search parameters have been applied.

Theoretical studies in nuclear structure

Description: In this period, the work has centered on two topics. The first is the study of a novel type of collective rotation in which an atomic nucleus with an inversion-symmetric shape rotates uniformly about an axis that is not a principal axis of the quadrupole tensor of the density distribution. This mode is referred to as tilted rotation. By using the cranking model together with higher-order corrections, it was shown that tilted rotation is indeed possible, not only within a microscopic framework, but also within the framework of collective models such as the IBM. The maximum tilt angle of {pi}/4 is realized for a certain class of states in the U(5) limit. The second topic, which actually was suggested during the course of the first investigation, is concerned with a new way of representing collective harmonic-oscillator algebras using boson-mapping techniques. In this approach, the many-phonon eigenvectors of a 2{lambda}+1-dimensional oscillator having good angular momentum are represented by simple products of boson operators acting on a vacuum. This representation may simplify the calculation of reduced matrix elements of arbitrary operators in collective models, but more work needs to be done.
Date: November 1, 1991
Creator: Marshalek, E.R.
Partner: UNT Libraries Government Documents Department

Microscopic calculations of nuclear structure and nuclear correlations

Description: A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting particles. Using realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, variational Monte Carlo methods are used to calculate nuclear ground-state properties, such as the binding energy, electromagnetic form factors, and momentum distributions. Other properties such as excited states and low-energy reactions are also calculable with these methods.
Date: January 1, 1992
Creator: Wiringa, R.B.
Partner: UNT Libraries Government Documents Department

Symmetries in confined classical Coulomb systems

Description: The properties of charged particles confined in a harmonic oscillator potential have become of increased interest lately in view of the development of techniques in ion traps and storage rings. The symmetries in such systems intrigued the imagination of Ted Hecht in connection with the storage ring at Heidelberg, and so perhaps it is an appropriate subject for this symposium.
Date: January 1, 1991
Creator: Schiffer, J.P.
Partner: UNT Libraries Government Documents Department