409 Matching Results

Search Results

Advanced search parameters have been applied.

A Collection of Complex Permittivity and Permeability Measurements

Description: We present the results of measurements of the complex permittivity and permeability over a frequency range of 0.1-5.1 GHz for a range of microwave absorbing materials used in a variety of accelerator applications. We also describe the automated measurement technique which uses swept-frequency S-parameter measurements made on a strip transmission line device loaded with the material under test.
Date: February 1, 1993
Creator: Barry, W.; Byrd, J.; Johnson, J. & Smithwick, J.
Partner: UNT Libraries Government Documents Department

Summit-Watertown transmission line project, South Dakota. Final Environmental Assessment

Description: The Western Area Power Administration (Western) needs to rebuild the existing Summit-Watertown 115-kV transmission line, located in northeastern South Dakota, and western Minnesota. Nearly 60 percent of the existing facility was replaced in 1965 after severe ice-loading broke structures and wires. Because of the extensive loss of the line, surplus poles had to be used to replace the damaged H-frame structures. These were of varying sizes, causing improper structure loading. Additionally, the conductors and overhead shield wires have been spliced in numerous places. This provides additional space on these wires for icing and wind resistance, which in turn create problems for reliability. Finally, a progressive fungal condition has weakened the poles and, along with the improper loading, has created an unsafe condition for maintenance personnel and the general public.
Date: December 1, 1993
Partner: UNT Libraries Government Documents Department

Marys Lake 69/115-kV transmission line upgrade and substation expansion projects

Description: Western Area Power Administration (Western) and the Platte River Power Authority (Platte River) propose to upgrade portions of the existing electric transmission and substation system that serves the Town of Estes Park, Colorado. The existing transmission lines between the Estes Power Plant Switchyard and the Marys Lake Substation include a 115,000 volt (115-kV) line and 69,000 volt (69-kV) line. Approximately one mile is a double-circuit 115/69-kV line on steel lattice structures, and approximately two miles consists of separate single-circuit 115-kV and a 69-kV lines, constructed on wood H-Frame structures. Both lines were constructed in 1951 by the US Bureau of Reclamation. The existing transmission lines are on rights-of-way (ROW) that vary from 75 feet to 120 feet and are owned by Western. There are 48 landowners adjacent to the existing ROW. All of the houses were built adjacent to the existing ROW after the transmission lines were constructed. Upgrading the existing 69-kV transmission line between the Marys Lake Substation and the Estes Power Plant Switchyard to 115-kV and expanding the Marys Lake Substation was identified as the most effective way in which to improve electric service to Estes Park. The primary purpose and need of the proposed project is to improve the reliability of electric service to the Town of Estes Park. Lack of reliability has been a historical concern, and reliability will always be less than desired until physical improvements are made to the electrical facilities serving Estes Park.
Date: May 1, 1996
Partner: UNT Libraries Government Documents Department

Power market analysis and potential revenues of new transmission lines in a deregulated environment.

Description: This paper describes an approach that was developed to analyze the market potential for power transactions via proposed transmission lines among the electric power utilities of Macedonia, Bulgaria, and Albania. The approach uses an integrated modeling framework consisting of several computer models that estimate the financial and economic benefits of constructing new transmission lines. The integrated model simulates open power markets under several scenarios that include cases with and without the proposed interconnections. The approach estimates power transactions among the three Balkan utility systems and the benefits of coordinated or joint system operations, including short-term power sales agreements.
Date: May 15, 2002
Creator: Koritarov, V. S.; Veselka, T. D. & Trouille, B.
Partner: UNT Libraries Government Documents Department

Including Internal Losses In The Equivalent Circuit Model Of The SLAC Damped Detuned Structure (DDS)

Description: In the equivalent circuit model for the DDS originally presented no losses were explicitly included in the cell circuits or the manifold circuits. Damping via the manifolds was effected by imposing matching conditions (including the possibility of reflection) on the ends of the manifolds. In this paper we extend the circuit theory to include lossy circuit elements. We discuss and compare shunt conductance and series resistance models for the cells. Manifold damping is modeled by introducing a shunt conductance per unit length in the transmission line elements of the manifolds. We apply the theory to the mitigation of performance degradation associated with fabricationally desirable decoupling of several cells at the ends of the structure from the manifolds.
Date: April 1, 1999
Creator: Jones, Roger M
Partner: UNT Libraries Government Documents Department

Ac loss calorimeter for three-phase cable

Description: A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.
Date: October 1, 1996
Creator: Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E. & DeBlanc, B.G.
Partner: UNT Libraries Government Documents Department

Weld-Windsor 115-kV Transmission Line Project, Weld County, Colorado

Description: The Western Area Power Administration is proposing to rebuild a 3.0 mile segment of the existing Flatiron-Weld 115-kV transmission line in Weld County. The line would be reconductored with new conductor on new wood pole double circuit structures. The new structures would support a double circuit transmission line configuration. The first circuit would be owned by Western and the second by Public Service Company of Colorado (PSCO). Alternatives considered included no action, constructing PSCO`s circuit on new right-of-way, and reconductoring Western`s existing line on the same structures. The proposed action was selected because it provided an opportunity to share structures with PSCO and, overall, would minimize costs and environmental impacts. The environmental assessment identifies minor effects on existing natural or human resources and minor benefits for agricultural operations.
Date: May 1, 1996
Partner: UNT Libraries Government Documents Department

Single-phase ac losses in prototype HTS conductors for superconducting power transmission lines

Description: The authors report single-phase ac loss measurements on 8, 4, and 3-layer, multi-strand, HTS prototype conductors for power transmission lines. They use both calorimetric and electrical techniques. The agreement between the two techniques suggests that the interlayer current distribution in one-meter long conductors are representative of those in long conductors. The losses for the 8 and 4-layer conductors are in rough agreement, with the 8-layer losses being somewhat lower. The 3-layer conductor losses are substantially higher--probably due to unbalanced azimuthal currents for this configuration.
Date: December 1, 1998
Creator: Daney, D.E.; Maley, M.P.; Boenig, H.J.; Willis, J.O.; Coulter, J.Y.; Gherardi, L. et al.
Partner: UNT Libraries Government Documents Department

Flow Impedance in a Uniform Magnetically-Insulated Transmission Line

Description: In two recent publications relativistic electron flow in cylindrical magnetically-insulated transmission lines (MITL) was analyzed and modeled under the assumption of negligible electron pressure. Cylindrical MITLs were used because of their common occurrence, and because they are the simplest case of finite width. The authors show in this report that the models apply equally to MITLs of any cross section.
Date: March 23, 1999
Creator: Mendel, C.W.
Partner: UNT Libraries Government Documents Department

Fast wave antenna array feed circuits tolerant of time-varying loading for DIII-D

Description: Three different transmission line configurations for operating a four-element antenna array with a single rf power source are compared. The goal of this study is to obtain a system that presents a matched load to the generator despite variation of the loading of the array elements due to changing plasma conditions.
Date: April 1, 1997
Creator: Pinsker, R.I.; Moeller, C.P. & Phelps, D.A.
Partner: UNT Libraries Government Documents Department

Wild Horse 69-kV transmission line environmental assessment

Description: Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.
Date: December 1, 1996
Partner: UNT Libraries Government Documents Department

Power line damage, electrical outages, reduced in the {open_quotes}sleet belt{close_quotes}

Description: Companies that depend on reliable supplies of electricity, as well as electrical utilities, need to defend against weather-related damage and power outages. Weather-related damage claims in the U.S. totaled $16 billion during the ten-year span from 1980 through 1989 and have already reached $48 billion in the first five years of this decade, evidence that climate change could be causing more severe storms. This makes technology that minimizes weather damage all the more welcome. Ice and snow build-up on high-voltage electric power lines in a moderate to high winds causes high-amplitude low-frequency mechanical vibrations, called galloping. When power lines react aero-elastically to these conditions, undamped vibration tears apart transmission towers and fittings or propels lines into each other, shorting out large circuits. Besides causing costly electric system outages and structural damage, this dramatic phenomenon steals power through higher electricity line losses that occur when other conductors have to carry more power to compensate for a tripped or damaged line. In a 1981 survey, 17 of 38 utilities reported that galloping was a moderate to severe problem, and 11 reported that they had a galloping event at least once a year. Fifty-seven percent of the incidents included flashover, and 60% included structural damage.
Date: April 1, 1998
Partner: UNT Libraries Government Documents Department

Novel design for a high power superconducting delay line

Description: Potential designs for a high power superconducting delay line of approximately 10ms duration are described. The transmitted signal should have low dispersion and little attenuation to recapture the original signal. Such demands cannot be met using conventional metal conductors. This paper outlines a proposal for a new transmission line design using low temperature superconducting material which meets system specifications. The 25W line is designed to carry pulsed signals with an approximate rise time of 8 nsec and a maximum voltage of 25kV. Predicted electrical design and performance of the line is presented.
Date: May 8, 1997
Creator: Chen, Y. J. & Caporaso, G. J.
Partner: UNT Libraries Government Documents Department

ERS, AY-farm electrical distribution

Description: This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the AY-Farm Electrical Distribution; in the Equipment Removal System portion of Project W-320, functions as required by the design criteria.
Date: September 19, 1996
Creator: Symons, G. A.
Partner: UNT Libraries Government Documents Department

A unique distribution system loss minimization scheme via reconfiguration with line capability limits

Description: This paper describes an integrated scheme for distribution system loss minimization with consideration of line capability limits via reconfiguration. Line capability limits are incorporated into the single loop optimization process as constraints. The integrated scheme is tested by 38-bus distribution system for different initial configurations, system losses are reduced significantly without any overload occurrence on feeder transformer network.
Date: June 1, 1997
Creator: Momoh, J.A.; Wang, Y. & Rizy, D.T.
Partner: UNT Libraries Government Documents Department

Engineering design of the Z magnetically-insulated transmission lines and insulator stack

Description: A 3.3 m diameter cylindrical insulator stack and a set of 3 m diameter conical magnetically insulated transmission lines (MITLs) were built for the Z accelerator. The 1.7 m tall insulator stack operates at {approx}20 MA and 2.5-3.5 MV, and was instrumented with 12 current and 24 voltage monitors. The insulator stack was concentrically and azimuthally aligned within 1.5 mm. The stack, containing 22 crosslinked polystyrene insulators and 18 grading rings, was designed to provide vertical stability for the MITLs and to resist radial buckling. 2-D and 3-D static finite element analyses (FEA) were used in designing the MITLs to limit gravity deflections to less than .25 mm. 2-D FEA dynamic analyses were done to predict motion and to help design features to restrict damage. Each MITL is divided into four concentric zones which fasten together in a way which facilitates fabrication, limits the extent of possible damage and allows for future changes at minimal cost. The tapered MITLs are supported by feedthrough rings in the insulator stack so that the gaps at small radius are adjustable from 0 to 22 mm. The MITL anodes were instrumented with 24 current monitors and have 48 additional diagnostic locations available. The MITLs were fabricated from 304L stainless steel except the outer anode sections, which were made from 6061-T6 aluminum alloy. Procedures were developed for fabrication of the large and small diameter MITL cones, as well as for the feedthrough rings and grading rings of the stack. The power-flow surfaces were successfully machined to within {+-}.25 mm of the specified contours. A large, multi-trolley MITL handling system was designed to allow for removal, cleaning and replacement of the MITLs for each shot, at a shot rate of 1.5 shots/day. Additional equipment allows for cleaning of the insulators.
Date: August 1, 1997
Creator: Ives, H.C.; Van De Valde, D.M.; Long, F.W. & Smith, J.W.
Partner: UNT Libraries Government Documents Department

The effect of the transmission grid on market power

Description: If competition could extend without hindrance through the entire extent of an electrically connected power grid, the US would have just two electricity markets, each with a uniform price. These markets would be competitive indeed. Unfortunately, losses and congestion present barriers to competition and thereby provide the likelihood of significantly increased market power. This paper begins the analysis of congestion as it affects the physical extent of markets and thereby affects the degree of market power. This is new territory; very little has previously been written in this area. Although the theoretical developments reported here rely on complex economic analysis, and although the market behaviors described are extremely subtle, several broad generalizations relevant to policy analysis can be made. From these generalizations one major policy conclusion can be drawn: In an unregulated market it will be socially beneficial to build a grid that is more robust than what is optimal in a regulated environment. Unused capacity may be needed. For a line to support full competition it may need to have a capacity that is much greater than the flow that will take place on it under full competition. Markets do not have sharp boundaries. Even with only one line the two busses may be in different regions, the same region, or partially in each other`s region. Increasing capacity is more effective on a small line. If connecting two busses with a very strong line will reduce market power, then the first MW of connecting capacity will have the most impact and each additional MW will have less. A congested line will cut a market into two non-competing regions. In each region the generators will markup according to the elasticity of the demand in only their region. A generator may reduce output in order to congest a line and increase ...
Date: May 1, 1997
Creator: Stoft, S.
Partner: UNT Libraries Government Documents Department


Description: Nonlinear dielectrics offer uniquely strong and tunable nonlinearities that make them attractive for current devices (for example, frequency-agile microwave filters) and for future signal-processing technologies. The goal of this project is to understand pulse propagation on nonlinear coplanar waveguide prototype devices. We have performed time-domain and frequency-domain experimental studies of simple waveguide structures and pursued a theoretical understanding of the propagation of signals on these nonlinear waveguides. To realistically assess the potential applications, we used a time-domain measurement and analysis technique developed during this project to perform a broadband electrodynamics characterization in terms of nonlinear, dispersive, and dissipative effects. We completed a comprehensive study of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior.
Date: August 1, 2000
Creator: REAGOR, D. & AL, ET
Partner: UNT Libraries Government Documents Department


Description: Although one must recognize that parametric studies like this are not equivalent to real cost estimates: one can draw some probable conclusions. Clearly, in all cases, there is a cost optimum: at higher fields, magnet costs rise disproportionally; at low fields tunnel and other linear costs are excessive. Fields above 10 T and bellow 3 T appear to be uneconomic. Field in the 4-6 T range seem optimum. Better superconductors raise the optimum field, but by surprisingly small amounts, and offer only small savings. On the other hand, reducing the magnet apertures yield large savings. In particular, we find that a collider with SSC like energy could cost about half that of the SSC if built with 5 T magnets and apertures yielding an impedance equal to that for the proposed transmission line magnet ring. It would also be about half the cost of a ring made with those transmission line magnets.
Date: July 1, 2001
Partner: UNT Libraries Government Documents Department

Early environmental planning: A process for power line corridor selection

Description: Los Alamos National Laboratory (LANL) conducted an environmental planning study in the fall of 1997 to help determine the best alternative for upgrading the Laboratory`s electrical power system. Alternatives considered included an on-site power generation facility and two corridors for a 10-mile-long 115-kV power line. This planning process was conducted prior to the formal National Environmental Policy Act (NEPA) review. The goals were to help select the best proposed action, to recommend modifications and mitigation measures for each alternative for a more environmentally sound project, and to avoid potential delays once the formal Department of Energy review process began. Significant constraints existed from a planning perspective, including operational issues such as existing outdoor high explosives testing areas, as well as environmental issues including threatened and endangered species habitats, multiple archeological sites, contaminated areas, and aesthetics. The study had to be completed within 45 days to meet project schedule needs. The process resulted in a number of important recommendations. While the construction and operation of the on-site power generation facility could have minimal environmental impacts, the need for a new air quality permit would create severe cost and schedule constraints for the project. From an environmental perspective, construction and operation of a power line within either corridor was concluded to be a viable alternative. However, impacts with either corridor would have to be reduced through specific recommended alignment modifications and mitigation measures.
Date: December 1, 1998
Creator: Haagenstad, T. & Bare, C.M.
Partner: UNT Libraries Government Documents Department

Transmission line capital costs

Description: The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.
Date: May 1, 1995
Creator: Hughes, K.R. & Brown, D.R.
Partner: UNT Libraries Government Documents Department

Development of superconducting transmission cable. CRADA final report

Description: The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.
Date: October 1, 1997
Creator: Hawsey, R.; Stovall, J.P.; Hughey, R.L. & Sinha, U.K.
Partner: UNT Libraries Government Documents Department

Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

Description: This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.
Date: August 1, 1997
Creator: Commonwealth Associates, Inc. & Institute, IIT Research
Partner: UNT Libraries Government Documents Department