4 Matching Results

Search Results

Advanced search parameters have been applied.

High-Energy, Long-Lived Charge Separated States via Molecular Engineering of Triplet State Donor-Acceptor Systems

Description: Molecular engineering of donor-acceptor dyads and multimodular systems to control the yield and lifetime of charge separation is one of the key goals of artificial photosynthesis for harvesting sustainably solar energy. The design of the donor-acceptor systems mimic a part of green plants and bacterial photosynthetic processes. The photochemical events in natural photosynthesis involve the capturing and funneling of solar energy by a group of well-organized chromophores referred to as an ‘antenna' system causing an electron transfer into the ‘reaction center,' where an electron transfer processes occur resulting a long-lived charge separated state. Over the last two to three decades, many efforts have been directed by the scientific community designing of multi-modular systems that are capable of capturing most of the useful sunlight and generating charge separated states of prolonged lifetimes with adequate amounts of energy. In this dissertation, we report on the design and synthesis of donor–acceptor conjugates with the goal of modulating the yield and lifetime of their charge separated states and hence, improving the conversion of light energy into chemical potential. In simple donor-acceptor systems, generally, the energy and electron transfer events originate from the singlet excited state of the donor or acceptor and can store the greatest amount of energy but must be fast to out compete intersystem crossing. To address this limitation, we have designed novel donor –acceptor conjugates that use high-energy triplet sensitizers in which electron transfer is initiated from the long lived triplet state of the donor. The triplet photosensitizers used were palladium(II) porphyrin and platinum(II) porphyrin. Heavy metal effect in these porphyrins promoted intersystem crossing and the energies of their excited state was quite high. For the case of palladium (II) porphyrin the energy stored was found to 1.89 eV and that of platinum(II) porphyrin 1.84 eV. In addition to using triplet ...
Date: August 2018
Creator: Obondi, Christopher O
Partner: UNT Libraries

First Demonstration of Surface Passivation in Dye-Sensitized TiO2 Solar Cells by an Additive in the Electrolyte

Description: The composition of the electrolyte is known to greatly influence the performance of dye-sensitized solar cells. It has been speculated that some components of the electrolyte passivate the TiO2 surface against recombination; however, this has never been confirmed experimentally. We hereby present the first case of passivation of the TiO2 surface against recombination by an additive in the electrolyte. Even though the additive also causes a downward movement of the TiO2 bands, suppression of recombination prevails and an overall improvement in open-circuit photovoltage is observed. This work was conducted in collaboration with the DOE Office of Science program.
Date: January 1, 2005
Creator: Kopidakis, N.; Neale, N. R.; van de Lagemaat, J. & Frank, A. J.
Partner: UNT Libraries Government Documents Department


Description: The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make ...
Date: July 18, 2012
Creator: Eisenberg, Professor Richard
Partner: UNT Libraries Government Documents Department