542 Matching Results

Search Results

Advanced search parameters have been applied.

Order from Chaos: (alpha)-Fe(001) Growth on GaAs(001)

Description: The growth of Fe upon GaAs(001) has been studied with Spin-Resolved Photoelectron Spectroscopy (SRPES), Photoelectron Spectroscopy (PES) and X-ray Magnetic Linear Dichroism (XMLD) in PES. Despite evidence of atomic level disorder such as intermixing, an over-layer with the spectroscopic signature of {alpha}-Fe(001), with a bcc real space ordering, is obtained. The results will be discussed in light of the possibility of using such films as a spin polarized source in device applications.
Date: February 8, 2008
Creator: Tobin, J G; Yu, S W; Morton, S A; Waddill, G D; Thompson, J D; Neal, J R et al.
Partner: UNT Libraries Government Documents Department

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

Description: A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting that the bottom of the conduction band is composed of states primarily from B10C2H12. Consequently these B10C2HX:Y films may exhibit longer electron-hole separation lifetimes as compared to pure B10C2HX films. This research should lead to an enhancement of boron carbide based neutron detectors, and is of potential significance for microelectronics, spintronics and photo-catalysis.
Date: August 2013
Creator: Pasquale, Frank L.
Partner: UNT Libraries

High resolution photoelectron images and D{sup +} photofragment images following 532-nm photolysis of D{sub 2}

Description: The non-resonant ionization and dissociation of D{sub 2} by intense 532-nm laser light is studied by a variation of the ``Ion Imaging`` technique called ``Velocity Mapping``. Images of the both the photoelectrons and D{sup +} photofragments are obtained and analyzed at two different laser intensities. Results are compared to previous studies and several differences are discussed.
Date: January 1, 1998
Creator: Chandler, D.W.; Neyer, D.W. & Heck, A.J.
Partner: UNT Libraries Government Documents Department

Dynamics of ultrafast internal conversion processes studied by femtosecond time-delayed photoelectron spectroscopy

Description: The authors have studied the dynamics of ultrafast internal conversion processes using femtosecond time-resolved photoionization and photoelectron spectroscopy. In hexatriene, following femtosecond pulse excitation at 250 nm, they use time-delayed photoionization to observe the formation and decay of an intermediate species on the subpicosecond time scale. With time-resolved photoelectron spectroscopy, the rapid evolution of vibrational excitation in this intermediate is observed, as electronic energy is converted to vibrational energy in the molecule. The photodynamics of cis and trans isomers of hexatriene are compared and found to be surprisingly different on the 2-3 psec time scale. These results are important for understanding the fundamental photochemical processes in linear polyenes, which have served as models for the active chromophores of many biological photosystems.
Date: August 1, 1995
Creator: Cyr, D.R. & Hayden, C.C.
Partner: UNT Libraries Government Documents Department

Don't always blame the photons: Relationships between deprotection blur, LER, and shot noise in EUV photoresists

Description: A corner rounding metric has been used to determine the deprotection blur of Rohm and Haas XP 5435, XP 5271, and XP 5496 extreme ultraviolet (EUV) photoresists as base weight percent is varied; an experimental open platform photoresist (EH27) as base weight percent is varied; and TOK EUVR P1123 and FUJI 1195 photoresists as post-exposure bake (PEB) temperature is varied. In the XP 5435, XP 5271, XP 5496, and EH27 resist platforms, a 6 times increase in base weight percent reduces the size of successfully patterned 1:1 lines by over 10 nm and lowers intrinsic line-edge roughness (LER) by over 2.5 nm without changing deprotection blur. In TOK EUVR P1123 photoresist, lowering the PEB temperature from 100 C to 80 C reduces measured deprotection blur (using the corner metric) from 30 nm to 20 nm and reduces the LER of 50 nm 1:1 lines from 4.8 nm to 4.3 nm. These data are used to drive a lengthy discussion about the relationships between deprotection blur, LER, and shot noise in EUV photoresists. We provide two separate conclusions: (1) shot noise is probably not the dominant mechanism causing the 3-4 nm EUV LER floor that has been observed over the past several years; (2) chemical contrast contributes to LER whenever deprotection blur is large relative to the printed half pitch.
Date: June 2, 2008
Creator: Anderson, Christopher N. & Naulleau, Patrick P.
Partner: UNT Libraries Government Documents Department

Importance of electronic relaxation for inter-coulombic decay in aqueous systems

Description: Inspired by recent photoelectron spectroscopy (PES) experiments on hydroxide solutions, we have examined the conditions necessary for enhanced (and, in the case of solutions, detectable) intercoulombic decay (ICD)--Auger emission from an atomic site other than that originally excited. We present general guidelines, based on energetic and spatial overlap of molecular orbitals, for this enhancement of ICDbased energy transfer in solutions. These guidelines indicate that this decay process should be exhibited by broad classes of biomolecules and suggest a design criterion for targeted radiooncology protocols. Our findings show that PES cannot resolve the current hydroxide coordination controversy.
Date: October 1, 2010
Creator: Schwartz, Craig P.; Fatehi, Shervin; Saykally, Richard J. & Prendergast, David
Partner: UNT Libraries Government Documents Department

Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

Description: The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.
Date: March 17, 2011
Creator: Tobin, J. G.
Partner: UNT Libraries Government Documents Department

In-situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions

Description: X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing the elemental composition of surfaces and the local chemical environment of adsorbed species. Conventional XPS experiments have been limited to ultrahigh vacuum (UHV) conditions due to a short mean free path of electrons in a gas phase. The recent advances in instrumentation coupled with third-generation synchrotron radiation sources enables in-situ XPS measurements at pressures above 5 Torr. In this review, we describe the basic design of the ambient pressure XPS setup that combines differential pumping with an electrostatic focusing. We present examples of the application of in-situ XPS to studies of water adsorption on the surface of metals and oxides including Cu(110), Cu(111), TiO2(110) under environmental conditions of water vapor pressure. On all these surfaces we observe a general trend where hydroxyl groups form first, followed by molecular water adsorption. The importance of surface OH groups and their hydrogen bonding to water molecules in water adsorption on surfaces is discussed in detail.
Date: October 29, 2007
Creator: Salmeron, Miquel; Yamamoto, S.; Bluhm, H.; Andersson, K.; Ketteler, G.; Ogasawara, H. et al.
Partner: UNT Libraries Government Documents Department

Inner-shell electron spectroscopy and chemical properties of atoms and small molecules

Description: The program has been concerned with gas-phase carbon 1s photoelectron spectroscopy of a number of molecules of potential chemical interest. The primary goals have been to determine carbon 1s ionization energies with a view of relating these to other chemical properties such as electronegativity, acidity, basicity, and reactivity, in order to provide a better understanding of these fundamental properties. The role of electron-donating (methyl) and electron-withdrawing (fluoro) substituents on the carbon 1s ionization energies of substituted benzenes has been studied., and these results have been related to measurements of the reactivities of the same molecule as well as to their affinities for protons (basicity). Opportunities for investigation in unplanned areas have arisen, and the program has been modified to take advantage of these. One has been the realization that, under certain circumstances, inner-shell ionization energies may depend on the molecular conformation. Several examples of this phenomenon have been investigated and it has been shown that this technique provides a tool for the measurement of the energy differences between different conformers of the same substance. The other has been the demonstration that photoelectron recoil can lead to the excitation of vibrational modes that are forbidden in the normal view of photoemission and to rotational heating of the molecule that increases with the energy of the exciting radiation.
Date: January 21, 2009
Creator: Thomas, T. Darrah
Partner: UNT Libraries Government Documents Department

ELECTRONIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

Description: Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large-scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions.
Date: April 1, 2001
Creator: M.K.Mazumder; Linduist, D.A. & Tennal, K.B.
Partner: UNT Libraries Government Documents Department

Electronic Surface Structures of Coal and Mineral Particles

Description: Surface science studies related to tribocharging and charge separation studies were performed on electrostatic beneficiation of coal. In contrast to other cleaning methods, electrostatic beneficiation is a dry cleaning process requiring no water or subsequent drying. Despite these advantages, there is still uncertainty in implementing large scale commercial electrostatic beneficiation of coal. The electronic surface states of coal macerals and minerals are difficult to describe due to their chemical complexity and variability [1]. The efficiency in separation of mineral particles from organic macerals depends upon these surface states. Therefore, to further understand and determine a reason for the bipolar charging observed in coal separation, surface analysis studies using Ultra-violet Photoelectron Spectroscopy (UPS) and X-ray Photoelectron Spectroscopy (XPS) were performed on coal samples and several materials that are used or considered for use in tribocharging. Electrostatic charging is a surface phenomenon, so the electronic surface states of the particles, which are influenced by the environmental conditions, determine both polarity and magnitude of tribocharging. UPS was used to measure the work function of the materials as typically used in ambient air. XPS was used to determine the surface chemistry in the form of contamination and degree of oxidation under the same environmental conditions. Mineral bearing coals are those amenable to electrostatic beneficiation. Three types of coal, Illinois No. 6, Pittsburgh No. 8, and Kentucky No. 9 were investigated in this study. Pulverized coal powder was tribocharged against copper. Pyritic and other ashes forming minerals in coal powders should charge with a negative polarity from triboelectrification, and organic macerals should acquire positive charge, according to the relative differences in the surface work functions between the material being charged and the charging medium. Different types of minerals exhibit different magnitudes of negative charge and some may also charge positively against copper [2]. Only the ...
Date: April 1, 2001
Creator: Mazumder, M.K.; Lindquist, D.A.; Tennal, K.B.; Trigwell, Steve; Farmer, Steve; Nutsukpul, Albert et al.
Partner: UNT Libraries Government Documents Department

Photoelectron Spectroscopy of U Oxide at LLNL

Description: In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.
Date: March 2, 2010
Creator: Tobin, J. G.; Yu, S.; Chung, B. W. & Waddill, G. D.
Partner: UNT Libraries Government Documents Department

Water adsorption on alpha-Fe2O3(0001) at near ambient conditions

Description: We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {<=} 34%) using ambient-pressure x-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7}% and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx}4 x 10{sup -2}% RH depending on sample temperature and water vapor pressure. The coverage of water reaches I ML at {approx} 15% RH and increases to 1.5 ML at 34% RH.
Date: November 23, 2009
Creator: Yamamoto, Susumu; Kendelewicz, Tom; Newberg, John T.; Ketteler, Guido; Starr, David E.; Mysak, Erin R. et al.
Partner: UNT Libraries Government Documents Department

Tantalum- and ruthenium-based diffusion barriers/adhesion promoters for copper/silicon dioxide and copper/low κ integration.

Description: The TaSiO6 films, ~8Å thick, were formed by sputter deposition of Ta onto ultrathin SiO2 substrates at 300 K, followed by annealing to 600 K in 2 torr O2. X-ray photoelectron spectroscopy (XPS) measurements of the films yielded a Si(2p) binding energy at 102.1 eV and Ta(4f7/2) binding energy at 26.2 eV, indicative of Ta silicate formation. O(1s) spectra indicate that the film is substantially hydroxylated. Annealing the film to > 900 K in UHV resulted in silicate decomposition to SiO2 and Ta2O5. The Ta silicate film is stable in air at 300K. XPS data show that sputter-deposited Cu (300 K) displays conformal growth on Ta silicate surface (TaSiO6) but 3-D growth on the annealed and decomposed silicate surface. Initial Cu/silicate interaction involves Cu charge donation to Ta surface sites, with Cu(I) formation and Ta reduction. The results are similar to those previously reported for air-exposed TaSiN, and indicate that Si-modified Ta barriers should maintain Cu wettability under oxidizing conditions for Cu interconnect applications. XPS has been used to study the reaction of tert-butylimino tris(diethylamino) tantalum (TBTDET) with atomic hydrogen on SiO2 and organosilicate glass (OSG) substrates. The results on both substrates indicate that at 300K, TBTDET partially dissociates, forming Ta-O bonds with some precursor still attached. Subsequent bombardment with atomic hydrogen at 500K results in stoichiometric TaN formation, with a Ta(4f7/2) feature at binding energy 23.2 eV and N(1s) at 396.6 eV, leading to a TaN phase bonded to the substrate by Ta-O interactions. Subsequent depositions of the precursor on the reacted layer on SiO2 and OSG, followed by atomic hydrogen bombardment, result in increased TaN formation. These results indicate that TBTDET and atomic hydrogen may form the basis for a low temperature atomic layer deposition (ALD) process for the formation of ultraconformal TaNx or Ru/TaNx barriers. The interactions ...
Date: December 2004
Creator: Zhao, Xiaopeng
Partner: UNT Libraries

The electronic structure of heavy fermions: Narrow temperature independent bands

Description: The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.
Date: August 1, 1996
Creator: Arko, A.J.; Joyce, J.J.; Smith, J.L. & Andrews, A.B.
Partner: UNT Libraries Government Documents Department

Nondipolar photoelectron angular distributions

Description: The deviations of photoelectron angular distributions from the simple, highly symmetric shapes predicted within the electric-dipole approximation are investigated. The admixture of an electric-quadrupole component in the photon-atom interaction causes an asymmetry in the angular distribution with respect to the direction of photon propagation. The reported measurement of the angular distributions of argon {ital 1s}, krypton {ital 2s}, and krypton {ital 2p} photoemission within 2-3 keV above their respective thresholds reveal pronounced asymmetries which are present even at low electron kinetic energies. The measured asymmetry parameters are in good agreement with recent predictions from nonrelativistic calculations.
Date: December 31, 1996
Creator: Kraessig, B.; Jung, M.; Gemmell, D.S.; Kanter, E.P.; LeBrun, T.; Southworth, S.H. et al.
Partner: UNT Libraries Government Documents Department

Collision-induced dissociation reactions and pulsed field ionization photoelectron

Description: This report summarized the four parts of the research study and describes the general conclusions. Individual chapters have been removed for separate processing. The chapter titles are: A study of the dissociation of CH{sub 3}SH{sup +} by collisional activation: Observation of non-statistical behavior; High resolution vacuum ultraviolet pulsed field ionization photoelectron band for OCS{sup +}(X{sup 2}{Pi}): An experimental and theoretical study; Rotationally resolved pulsed field ionization photoelectron bands of H{sub 2}{sup +} ({Chi}{sup 2}{Sigma}{sup +}{sub g}, v{sup +} = 0--18); and Rotationally resolved pulsed field ionization photoelectron bands of HD{sup +} ({Chi}{sup 2}{Sigma}{sup +}, v{sup +} = 0--21).
Date: February 12, 1999
Creator: Stimson, S.
Partner: UNT Libraries Government Documents Department

Single- and multi-photon ionization studies of organosulfur species

Description: Accurate ionization energies (IE`s) for molecular species are used for prediction of chemical reactivity and are of fundamental importance to chemists. The IE of a gaseous molecule can be determined routinely in a photoionization or a photoelectron experiment. IE determinations made in conventional photoionization and photoelectron studies have uncertainties in the range of 3--100 meV (25--250 cm{sup {minus}1}). In the past decade, the most exciting development in the field of photoionization and photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet (UV) and vacuum ultraviolet (VUV) laser sources. The laser pulsed field ionization photoelectron (PFI-PE) scheme is currently the state-of-the-art photoelectron spectroscopic technique and is capable of providing photoelectron energy resolution close to the optical resolution. The author has focused attention on the photoionization processes of some sulfur-containing species. The studies of the photoionization and photodissociation on sulfur-containing compounds [such as CS{sub 2}, CH{sub 3}SH, CH{sub 3}SSCH{sub 3}, CH{sub 3}CH{sub 2}SCH{sub 2}CH{sub 3}, HSCH{sub 2}CH{sub 2}SH and C{sub 4}H{sub 4}S (thiophene) and sulfur-containing radicals, such as HS, CS, CH{sub 3}S, CH{sub 3}CH{sub 2}S and CH{sub 3}SS], have been the major subjects in the group because sulfur is an important species contributing to air pollution in the atmosphere. The modeling of the combustion and oxidation of sulfur compounds represents important steps for the control of both the production and the elimination of sulfur-containing pollutants. Chapter 1 is a general introduction of the thesis. Chapters 2 and 6 contain five papers published in, or accepted for publication in, academic periodicals. In Chapter 7, the progress of the construction in the laboratory of a new vacuum ultraviolet laser system equipped with a reflectron mass spectrometer is presented. Chapters 2 through 7 have been removed for separate processing. A general conclusion of these studies are given in Chapter 8 followed by an ...
Date: February 12, 1999
Creator: Cheung, Y.S.
Partner: UNT Libraries Government Documents Department

Electron dynamics in the strong field limit of photoionization

Description: High precision photoelectron energy and angular distributions in helium and neon atoms for a broad intensity range reflect the change in the continuum dynamics that occurs as the ionization process evolves into the pure tunneling regime. Elastic rescattering of the laser-driven free electron from its parent ion core leaves a distinct signature on the spectra, providing a direct quantitative test of the various theories of strong field multiphoton ionization. We show that it takes a relatively complete semi-classical rescattering model to accurately reproduce the observed photoelectron distributions. However, the calculated inelastic rescattering rate fails to reproduce the measured nonsequential double ionization yields.
Date: December 31, 1998
Creator: Sheehy, B.; Walker, B.; Lafon, R. & Widmer, M.
Partner: UNT Libraries Government Documents Department

Photoemission in strongly correlated crystalline f-electron systems: A need for a new approach

Description: The unusual properties of heavy fermion (or heavy electron) materials have sparked an avalanche of research over the last two decades in order to understand the basic phenomena responsible for these properties. Photoelectron spectroscopy (often referred to as PES in the following sections), the most direct measurement of the electronic structure of a material, should in principle be able to shed considerable light on this matter. In general the distinction between a localized and a band-like state is trivially observed in band dispersion. Much of the past work was performed on poly-crystalline samples, scraped in-situ to expose a clean surface for PES. There have since been considerable advances both in the quality of specimens as well as experimental resolution, which raise questions regarding these conclusions. Much of the past work on poly-crystalline samples has been reported in several review articles, most notably Allen et al., and it is not necessary here to review those efforts again, with the exception of subsequent work performed at high resolution. The primary focus of the present review will be on new measurements obtained on single crystals, cleaved or prepared in situ and measured at high resolution, which seem to suggest that agreement with the GS and NCA approximations is less than perfect, and that perhaps the starting models need to be modified, or that even an entirely new approach is called for. Of the promising new models the Periodic Anderson Model is most closely related to the SIM. Indeed, at high temperatures it reverts to the SIM. However, the charge polaron model of Liu (1997) as well as the two-electron band model of Sheng and Cooper (1995) cannot yet be ruled out. Inasmuch as the bulk of the single crystal work was performed by the Los Alamos group, this review will draw heavily on ...
Date: December 1, 1998
Creator: Arko, A.J.; Joyce, J.J. & Sarrao, J.
Partner: UNT Libraries Government Documents Department

The Growth of Thin Epitaxial Copper Films on Ruthenium (0001)and Oxygen-Precovered Ruthenium (0001) as studied by x-rayphotoelectron diffraction. University of California, Davis, Department of Physics, Ph.D. Thesis

Description: In the first part of this dissertation, the variation of mean emitter depths with direction for core photoelectron emission from single crystals, including the effects of both isotropic inelastic scattering and single and multiple elastic scattering was theoretically studied. The mean emitter depth was found to vary by as much as &plusmn;30% with direction. In the second part of this dissertation, x-ray photoelectron diffraction (XPD) was used to study the structure and growth mechanisms of Cu films grown on a clean and an oxygen-precovered Ru(OOO1) surface. Experimental Cu 2p3/2 (E<sub>kin</sub> = 556 eV) and Ru 3d (E<sub>kin</sub> = 1205 eV) intensities were measured for Cu coverages from submonolayer up to several monolayer (ML) on the clean Ru(OOO1) surface. In addition, the O 1s (E<sub>kin</sub> = 958 eV) intensity was measured for Cu grown on oxygen precovered Ru(OOO1). These XPD intensities have been analyzed using single scattering cluster (SSC) and multiple scattering cluster (MSC) models. The first Cu layer has been found to grow pseudomorphically on the Ru(OOO1) surface in agreement with prior studies of the Cu/Ru(OOO 1) system. Thus, the initial growth is layer-by-layer. For higher coverages, XPD shows that the short-range structure of the Cu films is fcc Cu(l 11), but with significant interlayer relaxation (compared to bulk Cu(l 11)) that persists up to {ge}8 ML. When oxygen is preadsorbed on the Ru(OOO1) surface before Cu film growth (possibly to act as a surfactant promoting smoother growth), XPD shows that the first ~3 ML of Cu grow as 3-D islands. In addition, XPD shows that, during Cu growth, all of the oxygen "floats" on the CU surface, in contrast to prior studies which found that 30% of the oxygen remains at the Cu/Ru intetiace. XPD also indicates that the oxygen is highly disordered on the Cu overlayer surface. In ...
Date: June 1, 1997
Creator: Ruebush, Scott Daniel
Partner: UNT Libraries Government Documents Department

Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models

Description: The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45- 85 meV.
Date: December 31, 1997
Creator: Joyce, J.J.; Arko, A.J.; Sarrao, J.L. & Fisk, Z.
Partner: UNT Libraries Government Documents Department