716 Matching Results

Search Results

Advanced search parameters have been applied.

Photochemical and Photophysical Properties of Gold(I) Complexes and Phosphorescence Sensitization of Organic Luminophores

Description: Two major topics that involve synthetic strategies to enhance the phosphorescence of organic and inorganic luminophores have been investigated. The first topic involves, the photophysical and photochemical properties of the gold (I) complexes LAuIX (L = CO, RNC where R = alkyl or aryl group; X = halide or pseudohalide), which have been investigated and found to exhibit Au-centered phosphorescence and tunable photochemical reactivity. The investigations have shown a clear relationship between the luminescence energies and association modes. We have also demonstrated for the first time that aurophilic bonding and the ligand p-acceptance can sensitize the photoreactivity of Au(I) complexes. The second topic involves conventional organic fluorophores (arenes), which are made to exhibit room-temperature phosphorescence that originates from spin-orbit coupling owing to either an external or internal heavy atom effect in systematically designed systems that contain d10 metals. Facial complexation of polycyclic arenes to tris[{m-(3,4,5,6-tetrafluorophenylene)}mercury(II)], C18F12Hg3 (1) results in crystalline adducts that exhibit bright RGB (red-green-blue) phosphorescence bands at room temperature. This arene-centered phosphorescence is always accompanied by a reduction of the triplet excited state lifetime due to its sensitization by accelerating the radiative instead of the non-radiative decay. The results of both topics are significant for rational design of efficient metal and arene-centered phosphors for molecular light emitting diodes in addition to the fundamental novelties in inorganic chemistry and molecular spectroscopy.
Date: August 2006
Creator: El-Bjeirami, Oussama
Partner: UNT Libraries

The Effect of Electric Fields on Cathodoluminescence from Phosphors

Description: When external electric fields are applied to phosphors the cathodoluminescence (CL) at low beam energies is strongly affected. This experiment has been carried out on a variety of common phosphors used in cathode ray tube applications, and the electron beam energy, beam current, and electric field dependence of the CL are thoroughly characterized. It is found that the general features of these effects, particular y the strong polarity and beam energy dependence, are consistent with a model which assumes that the main effect of the electric fields is to alter the populations of electrons `and holes at the phosphor surface. This in turn, modulates the non-radiative energy losses that strongly affect the low-beam-energy CL efficiency. Because the external fields are applied without any direct contact to the phosphor material, the large changes seen in the CL decay rapidly as the beam-created electrons and holes polarize, shielding the externally applied bias. These results have important implications for designing phosphors which might be efficient at low electron energies.
Date: January 14, 1999
Creator: Seager, C. H.
Partner: UNT Libraries Government Documents Department

Enhanced Luminescence in Epitaxial Oxide Thin-Film Phosphors

Description: Undoped and Mn-doped ZnGa{sub 2}O{sub 4} thin-film phosphors were grown using pulsed laser ablation on (100) MgO single crystal and glass substrates. X-ray results showed the films on (100) MgO are well aligned both out-of plane and in-plane. Epitaxial films show superior photoluminescent intensity as compared to randomly oriented polycrystalline films, indicating that intragranular crystallinity strongIy influences luminescent properties. Li-doped ZnGa{sub 2}O{sub 4} exhibited significantly enhanced photoluminescence intensity.
Date: November 8, 1999
Creator: Lee, Y.E.; Norton, D.P.; Budai, J.D.; Park, C.; Kim, M.; Pennycook, S.J. et al.
Partner: UNT Libraries Government Documents Department

Hanford Borehole Geologic Information System (HBGIS) Updated User’s Guide for Web-based Data Access and Export

Description: The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised user’s guide supersedes the previous user’s guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.
Date: September 24, 2008
Creator: Mackley, Rob D.; Last, George V. & Allwardt, Craig H.
Partner: UNT Libraries Government Documents Department

Static and Time-Resolved 10-1000 ke V X-Ray Imaging Detector Options for NIF

Description: High energy (> 10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF High Energy Density Physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static (x-ray film, bare CCD, and scintillator + CCD) and time-resolved (streaked and gated) 10-1000 keV detectors.
Date: April 15, 2004
Creator: Landen, O; Bell, P; McDonald, J; Park, H; Weber, F; Moody, J et al.
Partner: UNT Libraries Government Documents Department

Studies of non-proportionality in alkali halide and strontium iodide scintillators using SLYNCI

Description: Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non-proportionality of scintillators. This device, known as SLYNCI (Scintillator Light-Yield Non-proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time. Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time. These studies include differences in nonproportionality between different types of scintillators, different members of the same family of scintillators, and impact of different doping levels. The results of such recent studies are presented here, including a study of various alkali halides, and the impact of europium doping level in strontium iodide. Directions of future work area also discussed.
Date: October 14, 2010
Creator: Ahle, Larry; Bizarri, Gregory; Boatner, Lynn; Cherepy, Nerine J.; Choong, Woon-Seng; Moses, William W. et al.
Partner: UNT Libraries Government Documents Department

Simple model relating recombination rates and non-proportional light yield in scintillators

Description: We present a phenomenological approach to derive an approximate expression for the local light yield along a track as a function of the rate constants of different kinetic orders of radiative and quenching processes for excitons and electron-hole pairs excited by an incident {gamma}-ray in a scintillating crystal. For excitons, the radiative and quenching processes considered are linear and binary, and for electron-hole pairs a ternary (Auger type) quenching process is also taken into account. The local light yield (Y{sub L}) in photons per MeV is plotted as a function of the deposited energy, -dE/dx (keV/cm) at any point x along the track length. This model formulation achieves a certain simplicity by using two coupled rate equations. We discuss the approximations that are involved. There are a sufficient number of parameters in this model to fit local light yield profiles needed for qualitative comparison with experiment.
Date: September 24, 2008
Creator: Moses, William W.; Bizarri, Gregory; Singh, Jai; Vasil'ev, Andrey N. & Williams, Richard T.
Partner: UNT Libraries Government Documents Department


Description: The construction and operation of a trigger system designed to fire a 30-kV 5000 A spark gap with a minimum delay following the arrival of a small signal pulse is described. In this particular experiment a 150-MeV/c muon is detected with scintillators on three 6199 phototubes, and the output pulse of the attached tunnel-diode triple-coincidence circuit is amplified and used to trigger the gap. Approximately 32 nanoseconds are needed from passage of the muon to the coincidence output, and approximately 25 nanoseconds are required from the coincidence output to the time of complete breakdown of the gap. These delays represent the shortest times that we could achieve with the particular boundary conditions under which the circuit had to operate. Sufficient detail is given to show how additional savings of nanoseconds could be made under different operating conditions.
Date: August 6, 1963
Creator: Schrank, Glen E.; Henry, George R.; Kerns, Quentin A. & Swanson, Robert A.
Partner: UNT Libraries Government Documents Department

Signal Analysis for Radiation Event Identification

Description: The method of digitizing the scintillation output signals from a lithiated sol-gel based glass is described. The design considerations for using the lithiated scintillator for the detection of Special Nuclear Material (SNM) is presented.
Date: December 30, 2004
Creator: Wallace, Steven A.
Partner: UNT Libraries Government Documents Department

Micronized Coal Reburning Demonstration for NOx Control: A DOE Assessment

Description: The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round IV, the Micronized Coal Reburning (MCR) Demonstration for NO{sub x} Control, as described in a report to Congress (U.S. Department of Energy 1999). The need to meet strict emissions requirements at a minimum cost prompted the Tennessee Valley Authority (TVA), in conjunction with Fuller Company, Energy and Environmental Research Corporation (EER), and Fluor Daniel, to submit the proposal for this project to be sited at TVA's Shawnee Fossil Plant. In July 1992, TVA entered into a cooperative agreement with DOE to conduct the study. However, because of operational and environmental compliance strategy changes, the Shawnee site became unavailable.
Date: August 15, 2001
Creator: National Energy Technology Laboratory (U.S.)
Partner: UNT Libraries Government Documents Department

Design and Implementation of a Facility for Discovering New Scintillator Materials

Description: We describe the design and operation of a high-throughput facility for synthesizing thousands of inorganic crystalline samples per year and evaluating them as potential scintillation detector materials. This facility includes a robotic dispenser, arrays of automated furnaces, a dual-beam X-ray generator for diffractometery and luminescence spectroscopy, a pulsed X-ray generator for time response measurements, computer-controlled sample changers, an optical spectrometer, and a network-accessible database management system that captures all synthesis and measurement data.
Date: April 25, 2008
Creator: Derenzo, Stephen; Derenzo, Stephen E; Boswell, Martin S.; Bourret-Courchesne, Edith; Boutchko, Rostyslav; Budinger, Thomas F. et al.
Partner: UNT Libraries Government Documents Department

Environmental Management Performance Report June 2000

Description: The purpose of this report is to provide the Department of Energy Richland Operations Office (DOE-RL) a monthly summary of the Project Hanford Management Contractor's (PHMC) Environmental Management (EM) performance by Fluor Hanford (FH) and its subcontractors. In addition to project-specific information, it includes some PHMC-level data not detailed elsewhere in the report. Section A, Executive Summary, provides an executive level summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides a forward look to some of the upcoming key performance activities as extracted from the PHMC baseline. The remaining sections provide detailed performance data relative to each individual Project (e.g., Waste Management, Spent Nuclear Fuels, etc.), in support of Section A of the report. Unless otherwise noted, the Safety, Conduct of Operations, and Cost/Schedule data contained herein is as of April 30, 2000. All other information is updated as of May 19, unless otherwise noted.
Date: June 1, 2000
Creator: EDER, D.M.
Partner: UNT Libraries Government Documents Department

Investigation of effects of deposition parameters on composition, microstructure,a nd emission of RF sputtered SrS:Eu thin film phosphors

Description: There has been little systematic study of the cause of dead (inactive) layers in II-VI phosphors used in thin film electroluminescent devices. This paper discusses preparation and characterization of rf sputter deposited Eu-doped Sr sulfide (SrS:Eu) thin films for use in a study to determine the cause of the dead layer. (The dead layer`s behavior is likely influenced by thin film composition, crystallinity, and microstructure.) We have deposited SrS:Eu thin films in a repeatable, consistent manner and have characterized properties such as composition, crystallinity, and microstructure as well as photoluminescent (PL) and electroluminescent behavior. The composition was determined using Rutherford backscattering spectrometry and electron microprobe analysis. XRD was used to assess crystalline orientation and grain size, SEM to image thin film microstructure. Measuring the PL decay after subnanosecond laser excitation in the lowest absorption band of the dopant allowed direct measurement of the dopant luminescence efficiency.
Date: December 31, 1996
Creator: Droes, S.R.; Mueller-Mach, R.; Mueller, G.O. & Ruffner, J.A.
Partner: UNT Libraries Government Documents Department

Fundamental Efficiency Limitations for Low Electron Energy Cathololuminescence

Description: The design of field emission displays is severely constrained by the universally poor cathodoluminescence (CL) efficiency of most phosphors at low excitation energies. As part of the effort to understand this phenomenon, the authors have measured the time decay of spectrally-resolved, pulsed CL and photoluminescence (PL) in several phosphors activated by rare earth and transition metal impurities, including Y{sub 2}O{sub 3}:Eu, Y{sub 2}SiO{sub 5}:Tb, and Zn{sub 2}SiO{sub 4}:Mn. Activator concentrations ranged from {approximately}0.25 to 10%. The CL decay curves are always non-linear on a log(CL)-linear(time) plot--i.e. they deviate from first order decay kinetics. These deviations are always more pronounced at short times and larger activator concentrations and are largest at low beam energies where the decay rates are noticeably faster. PL decay is always slower than that seen for CL, but these differences disappear after most of the excited species have decayed. They have also measured the dependence of steady state CL efficiency on beam energy. They find that larger activator concentrations accelerate the drop in CL efficiency seen at low beam energies. These effects are largest for the activators which interact more strongly with the host lattice. While activator-activator interactions are known to limit PL and CL efficiency in most phosphors, the present data suggest that a more insidious version of this mechanism is partly responsible for poor CL efficiency at low beam energies. This enhanced concentration quenching is due to the interaction of nearby excited activators. These interactions can lead to non-radiative activator decay, hence lower steady state CL efficiency. Excited state clustering, which may be caused by the large energy loss rate of low energy primary electrons, appears to enhance these interactions. In support of this idea, they find that PL decays obtained at high laser pulse energies resemble the non-linear decays seen in the CL data.
Date: August 1, 2000
Partner: UNT Libraries Government Documents Department

A wide-range phosphor thermometry technique

Description: Fluorescing materials exhibit a temperature dependence, which may be exploited for thermometry purposes. Solid state materials such as phosphors, glasses and crystals are examples of such and have been used in commercial instruments and various one-of-a- kind research and development applications. This area has been the subject of previous ISA papers. It is generally the case that fluorescence decay time or lifetime is the parameter that is measured in order to determine temperature for applications that do not require imaging. There are several good reasons for this. The decay time is a very sensitive function of temperature. Time- and rate-dependent methods are independent of amplitude fluctuations and are therefore not as susceptible to optical noise. In some applications, however, other aspects of the temperature-dependent fluorescence can also be useful. What follows is a description that concerns intensity-based methods and the types of applications to which they apply. The emphasis of the present work is the advantage for situations demanding a wide range and rapidly varying temperatures.
Date: March 1, 1998
Creator: Allison, S.W.; Beshears, D.L.; Cates, M.R. & Gillies, G.T.
Partner: UNT Libraries Government Documents Department

Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

Description: We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.
Date: July 26, 1997
Creator: Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F. et al.
Partner: UNT Libraries Government Documents Department

Cathodoluminescent display phosphors

Description: The past several years rendered a resurgence of interest in phosphors for low-voltage flat panel displays utilizing cathodoluminescence (CL). A major selection criterion for these phosphors is CL efficiency. The objective is to maximize the efficiency at low voltages. This work focuses on understanding the materials properties that influence CL efficiency below 1 kV. Existing high-voltage CL efficiency models take into account intrinsic materials properties such as band-gap energy. Experimental data reveals that the CL efficiency also depends on physical properties such as particle and crystallite size. An update, predictive model of CL efficiency that includes the effects of crystallite size, radiative recombination probability, and electron accelerating potential was developed. The predicted efficiencies agree very well with experimental results. The experimental data were collected using a hot filament electron gun in a demountable high-vacuum chamber. To obtain measurement accuracy, secondary electrons were collected and the phosphor excited with a uniform beam profile. A CL characterization protocol for display phosphors was established at Sandia National Laboratories and made available to phosphor researchers.
Date: January 4, 2000
Creator: Shea, L.E.
Partner: UNT Libraries Government Documents Department

Phosphor Thermometry of Gas Turbine Surfaces

Description: This paper describes a nondestructive method for thermometry applicable to ceramic surfaces and coatings. To date our primary application has been to turbine engine and air vehicle surfaces. This method makes use of thermally sensitive phosphors many of which, as it turns out, are also ceramics. These materials fluoresce when suitably illuminated by ultraviolet light. The fluorescence intensity and decay time are well-behaved functions of temperature and therefore serve as reliable indicators of the temperature of the substrate to which the fluorescing material is attached. It is a non- contact method in that the light delivery and collection optics can be remotely located. A range of phosphor materials have been tested and any temperature ranging from 8 to 1900 K can be measured by selection of the appropriate phosphor. Turbine blades, vanes, thermal barrier coatings, and panels are examples of surfaces which have been diagnosed to date in either engine or engine-simulation facilities. A variety of coating methods are used, including electron-beam deposition, radio-frequency sputtering, and curing with inorganic binders. This paper summarizes the results to date and status of this technology.
Date: December 31, 1995
Creator: Allison, Steven W.; Beshears, David L.; Cates, Michael R.; Noel, Bruce W. & Turley, W. D.
Partner: UNT Libraries Government Documents Department

Performance characteristics needed for protein crystal diffraction x-ray detectors.

Description: During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems.
Date: September 21, 1999
Creator: Westbrook, E. M.
Partner: UNT Libraries Government Documents Department

AnGa{sub 2}O{sub 4} Thin-Film Phosphors Grown by Pulsed Laser Ablation

Description: The growth and properties of undoped and Mn-doped ZnGa{sub 2}O{sub 4} thin-film phosphors on (100) MgO and glass substrates using pulsed laser ablation were investigated. Blue-white and green emission were observed for as-deposited undoped and Mn-doped films, respectively. Luminescent properties as well as crystallinity were considerably affected by processing conditions and film stoichiometry. Films with enhanced luminescent characteristics were obtained on single crystal substrates without post-annealing.
Date: April 5, 1999
Creator: Lee, Y. E.; Rouleau, C. M.; Park, C. & Norton, D. P.
Partner: UNT Libraries Government Documents Department

Scintillator manufacture at Fermilab

Description: A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.
Date: August 1, 1998
Creator: Mellott, K.; Bross, A. & Pla-Dalmau, A.
Partner: UNT Libraries Government Documents Department