42 Matching Results

Search Results

Advanced search parameters have been applied.

Brainstem Lipids' Relationship to Death

Description: Previous work relating postmortem findings with cause of death have focused on the vitreous portion of the body. This research investigated the link between phospholipids in the brainstem and cause of death. The lipids were extracted by the Folch extraction method and then separated by High Performance Thin Layer Chromatography. These techniques gave excellent separation and resolution. Results showed no link between cause of death and the type of lipids found in the brainstem after death.
Date: December 1982
Creator: Schrynemeeckers, Patrick J.
Partner: UNT Libraries

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2005
Creator: McHugh, John
Partner: UNT Libraries

N-Acylethanolamines and Plant Phospholipase D

Description: Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α.
Date: December 1998
Creator: Brown, Shea Austin
Partner: UNT Libraries

Role of Calcium and Phospholipids in Transepithelial Sodium Ion and Water Transport in Amphibian Epithelia

Description: The present investigation is concerned with determining the role of calcium, phospholipids, and phospholipid metabolites on transepithelial sodium and water transport in response to antidiuretic hormone (ADH). These studies utilize the frog skin for determining sodium transport and amphibian urinary bladder for water flow measurements and scanning electron microscopy of cell surface morphology. The results demonstrate that phospholipids and phospholipid metabolites containing arachidonic acid stimulate transepithelial sodium transport through amiloride sensitive channels and the action of these lipids involves the synthesis of prostaglandins. These lipids also inhibited the increase in water flow induced by ADH, and this effect was prevented with prostaglandin synthesis inhibitors. Prostaglandins alter intracellular calcium concentrations and agents effecting calcium metabolism alter cell surface morphology and the changes in surface substructure induced by ADH. These observations support the hypothesis that alterations in membrane permeability to water and ions may involve metabolism of membrane phospholipids and prostaglandin biosynthesis.
Date: August 1983
Creator: Tarapoom, Nimman
Partner: UNT Libraries

Chapter 11. Community analysis-based methods

Description: Microbial communities are each a composite of populations whose presence and relative abundance in water or other environmental samples are a direct manifestation of environmental conditions, including the introduction of microbe-rich fecal material and factors promoting persistence of the microbes therein. As shown by culture-independent methods, different animal-host fecal microbial communities appear distinctive, suggesting that their community profiles can be used to differentiate fecal samples and to potentially reveal the presence of host fecal material in environmental waters. Cross-comparisons of microbial communities from different hosts also reveal relative abundances of genetic groups that can be used to distinguish sources. In increasing order of their information richness, several community analysis methods hold promise for MST applications: phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP), cloning/sequencing, and PhyloChip. Specific case studies involving TRFLP and PhyloChip approaches demonstrate the ability of community-based analyses of contaminated waters to confirm a diagnosis of water quality based on host-specific marker(s). The success of community-based MST for comprehensively confirming fecal sources relies extensively upon using appropriate multivariate statistical approaches. While community-based MST is still under evaluation and development as a primary diagnostic tool, results presented herein demonstrate its promise. Coupled with its inherently comprehensive ability to capture an unprecedented amount of microbiological data that is relevant to water quality, the tools for microbial community analysis are increasingly accessible, and community-based approaches have unparalleled potential for translation into rapid, perhaps real-time, monitoring platforms.
Date: May 1, 2010
Creator: Cao, Y.; Wu, C.H.; Andersen, G.L. & Holden, P.A.
Partner: UNT Libraries Government Documents Department

Comparative Genomics and Evolution of Eukaryotic Phospholipid biosynthesis

Description: Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.
Date: December 1, 2006
Creator: Lykidis, Athanasios
Partner: UNT Libraries Government Documents Department

Regional Neonatal Associates for cooperative study of platelet-activating factor (PAF). Summary report

Description: Lipid inflammatory mediators are thought to play an important role in the pathogenesis of the respiratory distress syndrome, including neonatal lung injury and bronchopulmonary dysplasia (BPD). One such mediator is platelet-activating factor (PAF), a potent bioactive phospholipid that induces adverse airway, vascular, and microcirculatory responses. To study the role of PAF in neonatal lung disease, we used an {sup 125}I-radioimmunoassay to measure PAF in whole blood and tracheal lavage in very low birthweight infants at 1, 3, 5, 9, 21 and 28 days after birth. PAF was found in the pulmonary lavagate and blood of ventilated infants as early as one day after birth. Lavagate levels of PAF increased with acute injury (pneumothorax, pneumonia) but were not associated with BPD. Our results indicate PAF could be associated with the pathogenesis of BPD. We suggest that as a consequence of the pathophysiologic processes associated with BPD, PAF is released by pulmonary cells. Our preliminary data indicate that low birthweight infants also have lower PAF acetylhydrolase levels in cord blood and tracheal lavagate as compared to adults. Therefore, it is possible the increased levels of PAF in the blood of low birthweight infants might be due to persistent transient increases in PAF alveolar levels coupled with lower blood acetylhydrolase activities and could be important in the development of symptoms associated with BPD. Future plans for this project call for completing the enzymatic study of acetylhydrolase activity in pulmonary lavage of the BPD infants.
Date: November 1, 1992
Creator: Snyder, F.
Partner: UNT Libraries Government Documents Department

Subcellular Localization of N-acylphosphatidyl-ethanolamine Synthase in Cotyledons of Cotton Seedlings

Description: N-acylation of phosphatidylethanolamine (PE) with free fatty acids catalyzed by N-acyl phosphatidylethanolamine (NAPE) synthase was reported in cotyledons of 24-h-old cotton seedlings. Here I report subcellular localization of this enzyme. Differential centrifugation, sucrose density gradient fractionation,aqueous two-phase partitioning and electron microscopy techniques were utilized to elucidate subcellular site(s) of NAPE synthase. Marker enzymes were used to locate organelles in subcellular fractions. Differential centrifugation indicated that NAPE synthase is present in more than one organelle and it is a membrane bound enzyme. Sucrose density gradient fractionations indicated that NAPE synthase is present in membranes derived from endoplasmic reticulum (ER),Golgi and possibly plasma membrane (PM) but not mitochondria, glyoxysomes or plastids. Aqueous two-phase partitioning experiments with cotton and spinach tissues supported these results but Goigi appeared to be the major site of NAPE synthesis. Electron microscopy of subcellular fractions was used to examine isolated fractions to provide visual confirmation of our biochemical results. Collectively, these results indicate that NAPE is synthesized in plant ER, Golgi and possibly PM.
Date: December 1995
Creator: Sriparameswaran, Anuja
Partner: UNT Libraries

Muscarinic Receptor Modulation of the Phospholipid Effect in Cardiac Myocytes

Description: The muscarinic agonist carbachol stimulates a rapid increase in ^32Pi incorporation into phosphatidic acid (PA) and phosphatidylinositol (PI) in calcium tolerant myocytes prepared from heart tissue. The density of muscarinic receptors, determined by [^3H]-QNB binding, is greater in the atria than in the ventricles. 250 uM carbachol decreased specific [^3H]-QNB binding to muscarinic receptors on myocyte membranes by fifty percent. Trifluoperazine, also a phospholipase C inhibitor, inhibited the carbachol stimulated increase in ^32Pi incorporation into PA and PI and did not interfere with muscarinic receptor binding. Therefore, isolated canine myocytes provide a suitable model system to further study the muscarinic receptor stimulated phospholipid effect, and its role in mediating biochemical processes and physiological function in the heart.
Date: May 1986
Creator: Mattern, Janet
Partner: UNT Libraries

Characterization of Groundwater Microbial Communities from a Chlorinated-Ethene-Contaminated Landfill

Description: Molecular (rDNA), phospholipid fatty acid analysis (PLFA), and substrate utilization (BIOLOG) techniques were used to assess structural and functional differences between groundwater microbial communities from a chlorinated-ethene (CE)-contaminated landfill. Prokaryotic cells were collected from pristine (LFW 43B) and CE-contaminated (LFW 62D) groundwater monitoring wells on 0.2 micron filters, DNA was extracted from the filters, and libraries were prepared. For well LFW 43B, 26 clones were examined by sequencing and restriction endonuclease patterns, and all were found to be closely related to Pseudomonas gessardii and P. libaniensis. For well LFW 62D, 40 bacterial clones were examined, and 17 ribotypes were found including representatives of type I and II methylotrophs, Pseudomonas spp., Zoogloea spp., and other proteobacteria. In an archaeal library from well LFW 62D, all 15 of the clones examined were nearly identical and possessed about 89 percent sequence similarity to Cenarchaeum symbiosum. PLFA analysis revealed that the communities from contaminated groundwater contained primarily gram-negative bacteria, as indicated by the predominance of the biomarker 16:1w7c. The bacteria were in the stationary growth phase as indicated by the abundance of cyclopropyl fatty acids cy17:0 and cy19:0 and their respective precursors 16:1w7c and 18:1w7c. Further, PLFA ratios for 16:1w7t/16:1w7c and 18:1w7t/18:1w7c were greater than 0.1, indicative of increased cellular membrane permeability. Using BIOLOG GN plates, a similar number of substrates were utilized in LFW43B (72) and LFW 62D (63) communities, even though inoculum densities were 2-orders of magnitude greater in LFW 62D. The combination of non-selective characterization techniques was useful to further our understanding of CE-contamination on groundwater microbial communities.
Date: November 20, 2002
Creator: Brigmon, R.L.
Partner: UNT Libraries Government Documents Department

Characterization of Microbial Communities from Pristine and Chlorinated-Ethene-Contaminated Landfill Groundwater

Description: Molecular, phospholipid fatty acid analysis (PLFA), and substrate utilization (BIOLOG) techniques were used to assess structural and functional differences between microbial communities from a chlorinated-ethene (CE)-contaminated groundwater at a sanitary landfill. The information will be used to evaluate natural attenuation of the associated CE plume. Two groundwater-monitoring wells were tested.
Date: May 17, 2002
Creator: Brigmon, R.L.
Partner: UNT Libraries Government Documents Department

Probing the interaction of amphiphilic triblockcopolymers with a biomimetic membrane.

Description: In the last several years, there has been growing interest in the use of synthetic surfactants to augment cellular repair. Amphiphilic triblock copolymers such as PEO-PPO-PEO have been demonstrated to aid in the repair of a variety of cells. In spite of the reported success of these compounds in clinical trials, the mechanism of their interaction with cell membranes remains poorly understood. In this work, they describe their efforts to examine the effect of the mode of incorporation of triblock polyalkyleneoxide copolymers on membrane structure and stability. For this work, they have employed a model biomembrane whose structure and physical properties have been previously determined. Several modes of polymer incorporation are examined: introduction via a membrane spanning triblock copolymer, grafting onto a phospholipid headgroup, or introduction via a partially inserted triblock copolymer. The polymer-membrane interactions are probed by small angle X-ray scattering and thermal analysis.
Date: February 4, 2002
Creator: Firestone, M. A. & Seifert, S.
Partner: UNT Libraries Government Documents Department

Development of Extraction Techniques for the Detection of Signature Lipids from Oil

Description: Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.
Date: May 17, 2010
Creator: Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry & Mason, Olivia
Partner: UNT Libraries Government Documents Department

Comparison of Selective Culturing and Biochemical Techniques for Measuring Biological Activity in Geothermal Process Fluids

Description: For the past three years, scientists at the Idaho National Engineering and Environmental Laboratory have been conducting studies aimed at determining the presence and influence of bacteria found in geothermal plant cooling water systems. In particular, the efforts have been directed at understanding the conditions that lead to the growth and accumulation of biomass within these systems, reducing the operational and thermal efficiency. Initially, the methods selected were based upon the current practices used by the industry and included the collection of water quality parameters, the measurement of soluble carbon, and the use of selective medial for the determination of the number density of various types of organisms. This data has been collected on a seasonal basis at six different facilities located at the Geysers’ in Northern California. While this data is valuable in establishing biological growth trends in the facilities and providing an initial determination of upset or off-normal conditions, more detailed information about the biological activity is needed to determine what is triggering or sustaining the growth in these facilities in order to develop improved monitoring and treatment techniques. In recent years, new biochemical approaches, based upon the analyses of phospholipid fatty acids and DNA recovered from environmental samples, have been developed and commercialized. These techniques, in addition to allowing the determination of the quantity of biomass, also provide information on the community composition and the nutritional status of the organisms. During the past year, samples collected from the condenser effluents of four of the plants from The Geysers’ were analyzed using these methods and compared with the results obtained from selective culturing techniques. The purpose of this effort was to evaluate the cost-benefit of implementing these techniques for tracking microbial activity in the plant study, in place of the selective culturing analyses that are currently the industry ...
Date: September 1, 2000
Creator: Pryfogle, Peter Albert
Partner: UNT Libraries Government Documents Department

Integration of biological ion channels onto optically addressable micro-fluidic electrode arrays for single molecule characterization.

Description: The challenge of modeling the organization and function of biological membranes on a solid support has received considerable attention in recent years, primarily driven by potential applications in biosensor design. Affinity-based biosensors show great promise for extremely sensitive detection of BW agents and toxins. Receptor molecules have been successfully incorporated into phospholipid bilayers supported on sensing platforms. However, a collective body of data detailing a mechanistic understanding of membrane processes involved in receptor-substrate interactions and the competition between localized perturbations and delocalized responses resulting in reorganization of transmembrane protein structure, has yet to be produced. This report describes a systematic procedure to develop detailed correlation between (recognition-induced) protein restructuring and function of a ligand gated ion channel by combining single molecule fluorescence spectroscopy and single channel current recordings. This document is divided into three sections: (1) reported are the thermodynamics and diffusion properties of gramicidin using single molecule fluorescence imaging and (2) preliminary work on the 5HT{sub 3} serotonin receptor. Thirdly, we describe the design and fabrication of a miniaturized platform using the concepts of these two technologies (spectroscopic and single channel electrochemical techniques) for single molecule analysis, with a longer term goal of using the physical and electronic changes caused by a specific molecular recognition event as a transduction pathway in affinity based biosensors for biotoxin detection.
Date: December 1, 2004
Creator: Brozik, Susan Marie; Frink, Laura J. Douglas; Bachand, George David; Keller, David J. (University of New Mexico, Albuquerque, NM); Patrick, Elizabeth L.; Marshall, Jason A. (University of New Mexico, Albuquerque, NM) et al.
Partner: UNT Libraries Government Documents Department

Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

Description: Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.
Date: December 7, 2006
Creator: Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D & Ryan, R O
Partner: UNT Libraries Government Documents Department

RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT

Description: Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.
Date: May 26, 2005
Creator: Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C. & Berry, C. J.
Partner: UNT Libraries Government Documents Department

Monitoring Biological Activity at Geothermal Power Plants

Description: The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.
Date: September 1, 2005
Creator: Pryfogle, Peter
Partner: UNT Libraries Government Documents Department

Toward photostable multiplex analyte detection on a single mode planar optical waveguide

Description: We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.
Date: January 1, 2009
Creator: Mukundan, Harshini; Xei, Hongshi; Anderson, Aaron S; Grace, Wynne K; Martinez, Jennifer S & Swanson, Basil
Partner: UNT Libraries Government Documents Department

Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale.

Description: Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate themselves into the mesoporous silica film and direct organization of the nanoparticles to the cell surface for integration into the cell.
Date: January 1, 2006
Creator: Brinker, C. Jeffrey; Dunphy, Darren Robert; Ashley, Carlee E. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Lopez, DeAnna (University of New Mexico, Albuquerque, NM); Simpson, Regina Lynn et al.
Partner: UNT Libraries Government Documents Department