127 Matching Results

Search Results

Advanced search parameters have been applied.

Salt sensitivity of the morphometry of Artemia franciscana during development: a demonstration of 3D critical windows

Description: This article uses a 3D conceptual farmework of 'critical windows' to examine whether the morphometry of Artemia franciscana is altered by salinity exposure during certain key periods of development.
Date: December 1, 2015
Creator: Mueller, Casey A.; Willis, Eric & Burggren, Warren W.
Partner: UNT College of Arts and Sciences

A novel statistical method for rare-variant association studies in general pedigrees

Description: In this paper, the authors discuss a novel statistical method for rare-variant association studies in general pedigrees for quantitative traits. This method uses a retrospective view that treats the traits as fixed and the genotypes as random, which accounts for complex and undefined ascertainment of families.
Date: October 18, 2016
Creator: Zhu, Huanhuan; Wang, Zhenchuan; Wang, Xuexia & Sha, Qiuying
Partner: UNT College of Arts and Sciences

Integration of Phenotypic Metadata and Protein Similarity in Archaea Using a Spectral Bipartitioning Approach

Description: In order to simplify and meaningfully categorize large sets of protein sequence data, it is commonplace to cluster proteins based on the similarity of those sequences. However, it quickly becomes clear that the sequence flexibility allowed a given protein varies significantly among different protein families. The degree to which sequences are conserved not only differs for each protein family, but also is affected by the phylogenetic divergence of the source organisms. Clustering techniques that use similarity thresholds for protein families do not always allow for these variations and thus cannot be confidently used for applications such as automated annotation and phylogenetic profiling. In this work, we applied a spectral bipartitioning technique to all proteins from 53 archaeal genomes. Comparisons between different taxonomic levels allowed us to study the effects of phylogenetic distances on cluster structure. Likewise, by associating functional annotations and phenotypic metadata with each protein, we could compare our protein similarity clusters with both protein function and associated phenotype. Our clusters can be analyzed graphically and interactively online.
Date: January 1, 2009
Creator: Hooper, Sean D.; Anderson, Iain J; Pati, Amrita; Dalevi, Daniel; Mavromatis, Konstantinos & Kyrpides, Nikos C
Partner: UNT Libraries Government Documents Department

Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.

Description: Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.
Date: June 17, 2011
Creator: Marek, Laura F.
Partner: UNT Libraries Government Documents Department

Gene Expression in the Third Dimension: The ECM-nucleus Connection

Description: Decades ago, we and others proposed that the dynamic interplay between a cell and its surrounding environment dictates cell phenotype and tissue structure. Whereas much has been discovered about the effects of extracellular matrix molecules on cell growth and tissue specific gene expression, the nuclear mechanisms through which these molecules promote these physiological events remain unknown. Using mammary epithelial cells as a model, the purpose of this review is to discuss how the extracellular matrix influences nuclear structure and function in a three-dimensional context to promote epithelial morphogenesis and function in the mammary gland.
Date: October 1, 2009
Creator: Spencer, Virginia A; Xu, Ren & Bissell, Mina
Partner: UNT Libraries Government Documents Department

Francisella tularensis type A Strains Cause the Rapid Encystment of Acanthamoeba castellanii and Survive in Amoebal Cysts for Three Weeks post Infection

Description: Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown, and the organism's potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype (REP) is caused by factor(s) secreted by amoebae and/or F. tularensis into the co-culture media. Further, our results indicate that in contrast to LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks post infection and that induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that the interactions between F. tularensis strains and amoeba may play a role in the environmental persistence of F. tularensis.
Date: July 28, 2009
Creator: El-Etr, S H; Margolis, J; Monack, D; Robison, R; Cohen, M; Moore, E et al.
Partner: UNT Libraries Government Documents Department

Wnt signaling in triple-negative breast cancer

Description: This review summarizes the involvement of dysregulated Wnt signaling in the progression of triple-negative breast cancer (TNBC) and TNBC stem cells, as well as the emerging therapies that are currently under investigation.
Date: January 24, 2017
Creator: Pohl, Sebastian Ă–ther-Gee; Brook, N; Agostino, M.; Arfuso, Frank & Kumar, Alan Prem
Partner: UNT College of Arts and Sciences

Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

Description: Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.
Date: November 3, 2008
Creator: Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui et al.
Partner: UNT Libraries Government Documents Department

Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

Description: In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis ...
Date: January 1, 2009
Creator: Ganusov, Vitaly V
Partner: UNT Libraries Government Documents Department

Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

Description: The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.
Date: June 15, 2005
Creator: Kenny, Paraic A. & Bissell, Mina J.
Partner: UNT Libraries Government Documents Department

Medical Sequencing at the extremes of Human Body Mass

Description: Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight, we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.
Date: September 1, 2006
Creator: Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewski,Anna; Martin, Joes; Hebert, Sybil et al.
Partner: UNT Libraries Government Documents Department

Visualization of Growth Curve Data from Phenotype Microarray Experiments

Description: Phenotype microarrays provide a technology to simultaneouslysurvey the response of an organism to nearly 2,000 substrates, includingcarbon, nitrogen and potassium sources; varying pH; varying saltconcentrations; and antibiotics. In order to more quickly and easily viewand compare the large number of growth curves produced by phenotypemicroarray experiments, we have developed software to produce and displaycolor images, each of which corresponds to a set of 96 growth curves.Using color images to represent growth curves data has proven to be avaluable way to assess experiment quality, compare replicates, facilitatecomparison of the responses of different organisms, and identifysignificant phenotypes. The color images are linked to traditional plotsof growth versus time, as well as to information about the experiment,organism, and substrate. In order to share and view information and dataproject-wide, all information, plots, and data are accessible using onlya Web browser.
Date: April 19, 2007
Creator: Jacobsen, Janet S.; Joyner, Dominique C.; Borglin, Sharon E.; Hazen, Terry C.; Arkin, Adam P. & Bethel, E. Wes
Partner: UNT Libraries Government Documents Department

Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis

Description: In Arabidopsis, a complex of Polycomb-group (PcG) proteins functions in the female gametophyte to control the initiation of seed development. Mutations in the PcG genes, including MEDEA (MEA) and FERTILIZATION-INDEPENDENT SEED 2 (FIS2), produce autonomous seeds where endosperm proliferation occurs in the absence of fertilization. By using a yeast two-hybrid screen, we identified MEA and a related protein, SWINGER (SWN), as SET-domain partners of FIS2. Localization data indicated that all three proteins are present in the female gametophyte. Although single-mutant swn plants did not show any defects, swn mutations enhanced the mea mutant phenotype in producing autonomous seeds. Thus, MEA and SWN perform partially redundant functions in controlling the initiation of endosperm development before fertilization in Arabidopsis.
Date: August 29, 2006
Creator: Wang, Dongfang; Tyson, Mark D.; Jackson, Shawn S. & Yadegari, Ramin
Partner: UNT Libraries Government Documents Department

AZU-1: A Candidate Breast Tumor Suppressor and Biomarker for Tumor Progression

Description: To identify genes misregulated in the final stages of breast carcinogenesis, we performed differential display to compare the gene expression patterns of the human tumorigenic mammary epithelial cells, HMT-3522-T4-2, with those of their immediate premalignant progenitors, HMT-3522-S2. We identified a novel gene, called anti-zuai-1 (AZU-1), that was abundantly expressed in non- and premalignant cells and tissues but was appreciably reduced in breast tumor cell types and in primary tumors. The AZU-1 gene encodes an acidic 571-amino-acid protein containing at least two structurally distinct domains with potential protein-binding functions: an N-terminal serine and proline-rich domain with a predicted immunoglobulin-like fold and a C-terminal coiled-coil domain. In HMT-3522 cells, the bulk of AZU-1 protein resided in a detergent-extractable cytoplasmic pool and was present at much lower levels in tumorigenic T4-2 cells than in their nonmalignant counterparts. Reversion of the tumorigenic phenotype of T4-2 cells, by means described previously, was accompanied by the up-regulation of AZU-1. In addition, reexpression of AZU-1 in T4-2 cells, using viral vectors, was sufficient to reduce their malignant phenotype substantially, both in culture and in vivo. These results indicate that AZU-1 is a candidate breast tumor suppressor that may exert its effects by promoting correct tissue morphogenesis.
Date: February 4, 2000
Creator: Chen, Huei-Mei; Schmeichel, Karen L; Mian, I. Saira; Lelie`vre, Sophie; Petersen, Ole W & Bissell, Mina J
Partner: UNT Libraries Government Documents Department

Matrix Metalloproteinase Stromelysin-1 Triggers a Cascade of Molecular Alterations that leads to stable epithelial-to-Mesenchymal Conversion and a Premalignant Phenotype in Mammary Epithelial Cells

Description: Matrix metalloproteinases (MMPs) regulate ductal morphogenesis, apoptosis, and neoplastic progression in mammary epithelial cells. To elucidate the direct effects of MMPs on mammary epithelium, we generated functionally normal cells expressing an inducible autoactivating stromelysin-1 (SL-1) transgene. Induction of SL-1 expression resulted in cleavage of E-cadherin, and triggered progressive phenotypic conversion characterized by disappearance of E-cadherin and catenins from cell-cell contacts, downregulation of cytokeratins, upregulation of vimentin, induction of keratinocyte growth factor expression and activation, and upregulation of endogenous MMPs. Cells expressing SL-1 were unable to undergo lactogenic differentiation and became invasive. Once initiated, this phenotypic conversion was essentially stable, and progressed even in the absence of continued SL-1 expression. These observations demonstrate that inappropriate expression of SL-1 initiates a cascade of events that may represent a coordinated program leading to loss of the differentiated epithelial phenotype and gain of some characteristics of tumor cells. Our data provide novel insights into how MMPs function in development and neoplastic conversion.
Date: August 11, 1997
Creator: Lochter, A.; Galosy, S.; Muschler, J.; Freedman, N.; Werb, Z. & Bissell, M.J.
Partner: UNT Libraries Government Documents Department

Suppression of Apoptosis by Basement Membrane Requires three-dimensional Tissue Organization and Withdrawal from the Cell Cycle

Description: The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce {beta}-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the G1 cyclin kinase inhibitor p21/WAF-I and positive proliferative signals including c-myc and cyclin Dl were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor a and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-{beta}1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.
Date: December 28, 1995
Creator: Boudreau, N.; Werb, Z. & Bissell, M.J.
Partner: UNT Libraries Government Documents Department

A NON-CLEAVABLE UmuD VARIANT THAT ACTS AS A UmuD' MIMIC

Description: UmuD{sub 2} cleaves and removes its N-terminal 24 amino acids to form UmuD'{sub 2}, which activates UmuC for its role in UV-induced mutagenesis in E. coli. Cells with a non-cleavable UmuD exhibit essentially no UV-induced mutagenesis and are hypersensitive to killing by UV light. UmuD has been shown to bind to the beta processivity clamp (''beta'') of the replicative DNA polymerase, pol III. A possible beta-binding motif has been predicted in the same region of UmuD shown to be important for its interaction with beta. We performed alanine-scanning mutagenesis of this motif (14-TFPLF-18) in UmuD and showed that it has a moderate influence on UV-induced mutagenesis but is required for the cold sensitive phenotype caused by elevated levels of wild-type UmuD and UmuC. Surprisingly, the wild-type and the beta-binding motif variant bind to beta with similar K{sub d} values as determined by changes in tryptophan fluorescence. However, this data also implies that the single tryptophan in beta is in strikingly different environments in the presence of the wild-type versus the variant UmuD proteins, suggesting a distinct change in some aspect of the interaction with little change in its strength. Despite the fact that this novel UmuD variant is noncleavable, we find that cells harboring it exhibit phenotypes more consistent with the cleaved form UmuD', such as resistance to killing by UV light and failure to exhibit the cold sensitive phenotype. Cross-linking and chemical modification experiments indicate that the N-terminal arms of the UmuD variant are less likely to be bound to the globular domain than those of the wild-type, which may be the mechanism by which this UmuD variant acts as a UmuD' mimic.
Date: October 26, 2005
Creator: Beuning, P J; Simon, S M; Zemla, A; Barsky, D & Walker, G C
Partner: UNT Libraries Government Documents Department

Erythroblastic Islands: Specialized Mircoenvironmental Niches forErythropoiesis

Description: This review focuses on current understanding of molecular mechanisms operating within erythroblastic islands including cell-cell adhesion, regulatory feedback, and central macrophage function. RECENT FINDINGS: Erythroblasts express a variety of adhesion molecules and recently two interactions have been identified that appear to be critical for island integrity. Erythroblast macrophage protein, expressed on erythroblasts and macrophages, mediates cell-cell attachments via homophilic binding. Erythroblast intercellular adhesion molecule-4 links erythroblasts to macrophages through interaction with macrophage alphav integrin. In intercellular adhesion molecule-4 knockout mice, erythroblastic islands are markedly reduced, whereas the erythroblast macrophage protein null phenotype is severely anemic and embryonic lethal. Retinoblastoma tumor suppressor (Rb) protein stimulates macrophage differentiation by counteracting inhibition of Id2 on PU.1, a transcription factor that is a crucial regulator of macrophage differentiation. Rb-deficient macrophages do not bind Rb null erythroblasts and the Rb null phenotype is anemic and embryonic lethal. Lastly, extruded nuclei rapidly expose phosphatidylserine on their surface, providing a recognition signal similar to apoptotic cells. SUMMARY: Although understanding of molecular mechanisms operating within islands is at an early stage, tantalizing evidence suggests that erythroblastic islands are specialized niches where intercellular interactions in concert with cytokines play critical roles in regulating erythropoiesis.
Date: January 6, 2006
Creator: Chasis, Joel Anne
Partner: UNT Libraries Government Documents Department

A primer on regression methods for decoding cis-regulatory logic

Description: The rapidly emerging field of systems biology is helping us to understand the molecular determinants of phenotype on a genomic scale [1]. Cis-regulatory elements are major sequence-based determinants of biological processes in cells and tissues [2]. For instance, during transcriptional regulation, transcription factors (TFs) bind to very specific regions on the promoter DNA [2,3] and recruit the basal transcriptional machinery, which ultimately initiates mRNA transcription (Figure 1A). Learning cis-Regulatory Elements from Omics Data A vast amount of work over the past decade has shown that omics data can be used to learn cis-regulatory logic on a genome-wide scale [4-6]--in particular, by integrating sequence data with mRNA expression profiles. The most popular approach has been to identify over-represented motifs in promoters of genes that are coexpressed [4,7,8]. Though widely used, such an approach can be limiting for a variety of reasons. First, the combinatorial nature of gene regulation is difficult to explicitly model in this framework. Moreover, in many applications of this approach, expression data from multiple conditions are necessary to obtain reliable predictions. This can potentially limit the use of this method to only large data sets [9]. Although these methods can be adapted to analyze mRNA expression data from a pair of biological conditions, such comparisons are often confounded by the fact that primary and secondary response genes are clustered together--whereas only the primary response genes are expected to contain the functional motifs [10]. A set of approaches based on regression has been developed to overcome the above limitations [11-32]. These approaches have their foundations in certain biophysical aspects of gene regulation [26,33-35]. That is, the models are motivated by the expected transcriptional response of genes due to the binding of TFs to their promoters. While such methods have gathered popularity in the computational domain, they remain largely obscure ...
Date: March 3, 2009
Creator: Das, Debopriya; Pellegrini, Matteo & Gray, Joe W.
Partner: UNT Libraries Government Documents Department

SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

Description: Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.
Date: July 13, 2006
Creator: Han, Hye-Jung; Kohwi, Yoshinori & Kohwi-Shigematsu, Terumi
Partner: UNT Libraries Government Documents Department

Deletion of ultraconserved elements yields viable mice

Description: Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.
Date: July 15, 2007
Creator: Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A. et al.
Partner: UNT Libraries Government Documents Department

Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

Description: Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation properties of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.
Date: January 1, 2010
Creator: Visel, Axel; Zhu, Yiwen; May, Dalit; Afzal, Veena; Gong, Elaine; Attanasio, Catia et al.
Partner: UNT Libraries Government Documents Department