2,547 Matching Results

Search Results

Advanced search parameters have been applied.

Discontinuous Thermal Expansions and Phase Transformations in Crystals at Higher Temperatures

Description: The purpose of this investigation is to make more detailed studies of transformations. Fourteen compounds have been examined by high temperature X-ray diffraction for this purpose. The investigations have been carried out in such a way as to reveal: 1. the existence of transformations, 2. the influence of polarizability on thermal expansion, 3. the anisotropy of expansion, and 4. the discontinuity of thermal expansion.
Date: 1967
Creator: Hsu, Yuan Tsun
Partner: UNT Libraries

Phase transformation of poled "chem-prep" PZT 95/5-2Nb ceramic under quasi-static loading conditions.

Description: Specimens of poled 'chem-prep' PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at three temperatures of -55, 25, and 75 C and pressures up to 500 MPa. The objective of this experimental study was to obtain the electro-mechanical properties of the ceramic and the criteria of FE (Ferroelectric) to AFE (Antiferroelectric) phase transformations so that grain-scale modeling efforts can develop and test models and codes using realistic parameters. The poled ceramic undergoes anisotropic deformation during the transition from a FE to an AFE structure. The lateral strain measured parallel to the poling direction was typically 35 % greater than the strain measured perpendicular to the poling direction. The rates of increase in the phase transformation pressures per temperature changes were practically identical for both unpoled and poled PNZT HF803 specimens. We observed that the retarding effect of temperature on the kinetics of phase transformation appears to be analogous to the effect of shear stress. We also observed that the FE-to-AFE phase transformation occurs in poled ceramic when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.
Date: October 1, 2004
Creator: Lee, Moo Yul; Montgomery, Stephen Tedford & Hofer, John H.
Partner: UNT Libraries Government Documents Department

Random organization and plastic depinning

Description: We provide evidence that the general phenomenon of plastic depinning can be described as an absorbing phase transition, and shows the same features as the random organization which was recently studied in periodically driven particle systems [L. Corte, Nature Phys. 4, 420 (2008)]. In the plastic flow system, the pinned regime corresponds to the absorbing state and the moving state corresponds to the fluctuating state. When an external force is suddenly applied, the system eventually organizes into one of these two states with a time scale that diverges as a power law at a nonequilibrium transition. We propose a simple experiment to test for this transition in systems with random disorder.
Date: January 1, 2008
Creator: Reichhardt, Charles & Reichhardt, Cynthia
Partner: UNT Libraries Government Documents Department

Development of a carburizing and quenching simulation tool: A material model for low carbon steels undergoing phase transformations

Description: An internal state variable formulation for phase transforming alloy steels is presented. We have illustrated how local transformation plasticity can be accommodated by an appropriate choice for the corresponding internal stress field acting between the phases. The state variable framework compares well with a numerical micromechanical calculation providing a discrete dependence of microscopic plasticity on volume fraction and the stress dependence attributable to a softer parent phase. The multiphase model is used to simulate the stress state of a quenched bar and show qualitative trends in the response when the transformation phenomenon is incorporated on the length scale of a global boundary value problem.
Date: June 24, 1996
Creator: Bammann, D.; Prantil, V. & Kumar, A.
Partner: UNT Libraries Government Documents Department

Do phase transitions survive binomial reducibility and thermal scaling?

Description: First order phase transitions are described in terms of the microcanonical and canonical ensemble, with special attention to finite size effects. Difficulties in interpreting a `caloric curve` are discussed. A robust parameter indicating phase coexistence (univariance) or single phase (bivariance) is extracted for charge distributions. 9 refs., 4 figs.
Date: May 1, 1996
Creator: Moretto, L.G.; Phair, L. & Wozniak, G.J.
Partner: UNT Libraries Government Documents Department

Phase transitions: An overview with a view

Description: The dynamics of phase transitions plays a crucial role in the so- called interface between high energy particle physics and cosmology. Many of the interesting results generated during the last fifteen years or so rely on simplified assumptions concerning the complex mechanisms typical of nonequilibrium field theories. After reviewing well-known results concerning the dynamics of first and second order phase transitions, I argue that much is yet to be understood, in particular in situations where homogeneous nucleation theory does not apply. I present a method to deal with departures from homogeneous nucleation, and compare its efficacy with numerical simulations. Finally, I discuss the interesting problem of matching numerical simulations of stochastic field theories with continuum models.
Date: October 1, 1997
Creator: Gleiser, M.
Partner: UNT Libraries Government Documents Department

Dynamics of the Si(111) surface phase transition

Description: The authors have used low-energy electron microscopy to investigate the dynamics of the Si(111) 7 x 7 {r_arrow} 1 x 1 phase transition. Because the densities of the two phases differ, the phase transformation is analogous to precipitation in bulk systems: additional material must diffuse to the phase boundaries in order for the transformation to occur. By measuring the size evolution of an ensemble of domains, and comparing the results to simulations, they have identified a new mechanism of precipitate growth. The source of material necessary for the transformation is the random creation of atom/vacancy pairs at the surface. This mechanism contrasts sharply with classical theories of precipitation, in which mass transport kinetics determine the rate of transformation.
Date: January 27, 1999
Partner: UNT Libraries Government Documents Department

Synthesis and Physical Properties of Environmentally Responsive Polymer Gels

Description: Polymer gels undergo the volume phase transition in response to an infinitesimal environmental change. This remarkable phenomenon results in many potential applications of polymer gels. This dissertation systematically investigates the chemical and physical properties of polymer gels. It is found that infrared radiation laser not only induces a volume phase transition in N-isopropylacrylamide (NIPA) gel, but also causes the gel to bend toward the laser beam. The transmission of visible laser light through a NIPA gel can also be controlled by adjusting the infrared laser power. A new class of environmentally responsive materials based on spatial modulation of the chemical nature of gels has been proposed and demonstrated. Three simple applications based on the modulated gels are presented: a bi-gel strip, a shape memory gel, and a gel hand. The bending of bi-gels has been studied as a function of temperature, acetone aqueous solution, and salt solution. As the polymer network concentration increases, the behavior of shear modulus of acrylamide (PAAM) gels deviates significantlyfromthe classical theory. The ionic NIPA gels undergo two sequential volume phase transitions: one occurs in dilute NaCl solution, the other occurs in concentrated NaCl solution. An interpenetrating polymer network (IPN) of PAAM--NIPA has also been synthesized using free radical polymerization. It is found that the IPN gels preserve the essential properties of individual components. The volume phase transition of the IPN gels can be triggered by multiple external stimuli including temperature, acetone concentration, and salt concentration.
Date: May 1996
Creator: Zhang, Xiaomin
Partner: UNT Libraries

Nanostructured block copolymers.

Description: Block copolymers are well known to undergo micro-phase separation. Typical domain sizes range from a few to about 100 nanometers. With use of OPV{sub n-}PEG{sub m} diblock copolymers, long nanofiber, short nanorod, and lamella morphologies have been observed. OPV is oligo(phenylenevinylene) and PEG is poly(ethyleneglycol). The OPV segment is photoluminescent as well as electroluminescent. The micrometer long OPV{sub 13-}PEG{sub 45} nanofiber consists of OPV{sub 13} inner core with radius of 5.2 nm, and PEG{sub 45} outer shell with overall fiber radius of 7.9 nm. The nanorod has similar core-shell composition but with much shorter length of {approx}100 nm. Lamella morphology consists of alternating OPV and PEG layers. The structural characterization and physical properties of these nanostructured materials and their implication are summarized.
Date: July 9, 2002
Creator: Wang, H. H.; Wang, H.; Yu, L.; Han, C. Y.; Csencsits, R.; Willing, G. A. et al.
Partner: UNT Libraries Government Documents Department

Microstructure and kinetics of the plutonium $beta$ $Yields$ $alpha$ and $gamma$ $Yields$ $alpha$ transformations

Description: Supported-discharge cathodic etching and SEM examination techniques were developed for $alpha$-Pu and used to investigate the $alpha$ microstructures formed by the $beta$/sub $alpha$/ $Yields$ $alpha$ and $beta$/sub $gamma$/ $Yields$ $alpha$ transformations in high-purity extruded Pu at low and high $alpha$-phase temperatures ($beta$/sub $alpha$/ and $beta$/sub $gamma$/ are $beta$ formed from $alpha$ and $gamma$, respectively). Low (200$sup 0$K) $beta$/ sub $alpha$/ $Yields$ $alpha$ transformation temperatures produced $alpha$ with a grain size that was finer than that of the original extruded $alpha$ and substantially smaller than the grain size of the $alpha$ formed from $beta$/sub $gamma$/. At high $alpha$-phase temperatures (343 to 370$sup 0$K), $beta$/sub $alpha$/ transformed to $alpha$ by the surface nucleation and inward growth of colonies of columnar $alpha$ grains oriented radially with respect to the original nucleation site. The transformation kinetics could be correlated with the microstructural observations based on a correspondence between the long axes of the grains and the (010) direction of the monoclinic $alpha$-Pu structure. Significant changes in the size, shape, and orientation of the $alpha$ grains were noted with increasing transformation temperature. Conversely, the grain size of the $alpha$ formed from $beta$/sub $gamma$/ was essentially constant at all transformation temperatures. Metallographic evidence of the $gamma$ $Yields$ $alpha$ skip transformation or a significant change in the mode of the $gamma$ $Yields$ $alpha$ transformation was obtained by a comparison of the $alpha$ microstructures produced by quenching $gamma$ to high (362 to 368$sup 0$K) and low (200$sup 0$K) $alpha$-phase temperatures. (auth)
Date: January 1, 1975
Creator: Allen, R.P. & Arrow Smith, H.W.
Partner: UNT Libraries Government Documents Department

Progress report on DOE research project [Thermodynamic and kinetic behavior of systems with intermetallic and intermediate phases]

Description: A theoretical investigation was made of the coherent displacive phase transformation between two equilibrium single-phase states producing several orientation variants of the product phase. The research was focused on a behavior of coherent systems (martensitic systems, metal and ceramic, and ferroelectric systems) with defects. The computer simulation demonstrated that randomly distributed static defects may drastically affect the thermodynamics, kinetics, and morphology of the transformation. In particular, the interaction of the transformation mode with the defects may be responsible for appearance of two new fields in the phase diagram: (i) the two-phase field describing the tweed microstructure, which consists of the retain parent phase and the variants of the product phase and (ii) the single-phase field describing the tweed microstructure, which consists of the variants of the product phase. These new fields can be attributed to the pre-transitional states observed in some of th e displacive transformations. The microstructure evolution resulting in formation of the thermoelastic equilibrium is path dependent. This unusual behavior is expected in systems with a sharp dependence of the transition temperature on the defect concentration.
Date: December 13, 2000
Creator: Tsakalakos, T.; Semenovskaya-Khachaturyan, S. & Khachaturyan, A.G.
Partner: UNT Libraries Government Documents Department

The effects of composition, temperature and sample size on the sintering of chem-prep high field varistors.

Description: The sintering behavior of Sandia chem-prep high field varistor materials was studied using techniques including in situ shrinkage measurements, optical and scanning electron microscopy and x-ray diffraction. A thorough literature review of phase behavior, sintering and microstructure in Bi{sub 2}O{sub 3}-ZnO varistor systems is included. The effects of Bi{sub 2}O{sub 3} content (from 0.25 to 0.56 mol%) and of sodium doping level (0 to 600 ppm) on the isothermal densification kinetics was determined between 650 and 825 C. At {ge} 750 C samples with {ge}0.41 mol% Bi{sub 2}O{sub 3} have very similar densification kinetics, whereas samples with {le}0.33 mol% begin to densify only after a period of hours at low temperatures. The effect of the sodium content was greatest at {approx}700 C for standard 0.56 mol% Bi{sub 2}O{sub 3} and was greater in samples with 0.30 mol% Bi{sub 2}O{sub 3} than for those with 0.56 mol%. Sintering experiments on samples of differing size and shape found that densification decreases and mass loss increases with increasing surface area to volume ratio. However, these two effects have different causes: the enhancement in densification as samples increase in size appears to be caused by a low oxygen internal atmosphere that develops whereas the mass loss is due to the evaporation of bismuth oxide. In situ XRD experiments showed that the bismuth is initially present as an oxycarbonate that transforms to metastable {beta}-Bi{sub 2}O{sub 3} by 400 C. At {approx}650 C, coincident with the onset of densification, the cubic binary phase, Bi{sub 38}ZnO{sub 58} forms and remains stable to >800 C, indicating that a eutectic liquid does not form during normal varistor sintering ({approx}730 C). Finally, the formation and morphology of bismuth oxide phase regions that form on the varistors surfaces during slow cooling were studied.
Date: September 1, 2007
Creator: Garino, Terry J.
Partner: UNT Libraries Government Documents Department

Phase transformation of "chem-prep" PZT 95/5-2Nb HF1035 ceramic under quasi-static loading conditions.

Description: Specimens of poled and unpoled ''chem-prep'' PNZT ceramic from batch HF1035 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions at -55, 25, and 75 C. The objective of this experimental study was to characterize the mechanical properties and conditions for the ferroelectric (FE) to antiferroelectric (AFE) phase transformations of this ''chem-prep'' PNZT ceramic to aid grain-scale modeling efforts in developing and testing realistic response models for use in simulation codes. As seen from a previously characterized material (batch HF803), poled ceramic from HF1035 was seen to undergo anisotropic deformation during the transition from a FE to an AFE phase. Also, the phase transformation was found to be permanent for the two low temperature conditions, whereas the transformation can be completely reversed at the highest temperature. The rates of increase in the phase transformation pressures with temperature were practically identical for both unpoled and poled PNZT HF1035 specimens. We observed that temperature spread the phase transformation over mean stress analogous to the observed spread over mean stress due to shear stress. Additionally, for poled ceramic samples, the FE to AFE phase transformation was seen to occur when the normal compressive stress, acting perpendicular to a crystallographic plane about the polar axis, equals the hydrostatic pressure at which the transformation otherwise takes place.
Date: July 1, 2006
Creator: Montgomery, Stephen Tedford; Lee, Moo Yul; Meier, Diane A. & Hofer, John H.
Partner: UNT Libraries Government Documents Department

Growth of second phase particles in a copper--beryllium alloy. Final technical report

Description: Growth of second phase particles from a solid solution of copper-beryllium was studied to determine this alloy's suitability for acoustic emission testing. Optical and Scanning Electron microscopes were used to study the microstructure. Micro and macro hardness tests were also performed. A hardness curve for aging at 550/sup 0/F was determined. Microscopic examination revealed the presence of large inclusions which make this alloy unsuitable for the acoustic tests envisioned.
Date: June 2, 1977
Creator: Bunch, R.; Wells, R. & Mukherjee, A.K.
Partner: UNT Libraries Government Documents Department

High-temperature borate liquids: physical properties of glass-forming compositions

Description: Several experimental routes can be used to develop a better understanding of the polymeric constitution (polyanionic and/or polyhedral distribution) of borate, germanate, and silicate glasses. Spectral, chemical, physical-chemical, and mechanical property information can be determined directly for the glass compositions of interest. Generally, only physical-chemical information is readily accessible for the corresponding high temperature liquids. It will be shown that information on each state of matter has its own particular merits. Most of the evidence thus far published suggests an excellent agreement between polyhedral distributions in an oxide glass and its corresponding high temperature liquid state. There is no well known oxide glass forming system for which such a state of affairs does not exist. In spite of this, occasional efforts are put forth which ignore some of what is known for oxide liquids, glasses, and crystals. Such attempts therefore invariably imply, if only indirectly, that significant changes occur in the polyhedral distributions close to the glass transition temperature region. Specific examples to be discussed will include efforts that avoid well known coordination change equilibria such as BO/sub 3/ reversible BO/sub 4/ and GeO/sub 4/ reversible GeO/sub 6/.
Date: May 6, 1977
Creator: Riebling, E.F.
Partner: UNT Libraries Government Documents Department

Pore structure and growth kinetics in carbon materials

Description: Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.
Date: April 1, 1978
Creator: Bose, S.
Partner: UNT Libraries Government Documents Department

Crystalline to amorphous transformation in silicon

Description: In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.
Date: September 1, 1982
Creator: Cheruvu, S.M.
Partner: UNT Libraries Government Documents Department

In Situ Spectroscopic Observation of Activation and Transformation of Tantalum Suboxides

Description: Using ambient pressure X-ray Photoelectron Spectroscopy (AP-XPS), we were able to observe the process of oxidation of tantalum with different morphological parameters. Being able to trace surface evolution during oxidation, we evaluated activation energy of oxidation under the influence of strain and grain boundaries. It was found that the metal oxidized through three different stages and there was a transition stage where the phase transformation from suboxides to the equilibrium state of pentoxide. The applied stress and surface defects reduced the activation energy oxidation.
Date: December 16, 2009
Creator: Wang, Ke; Liu, Zhi; Cruz, Tirma Herranz; Salmeron, Miquel & Liang, Hong
Partner: UNT Libraries Government Documents Department

Comment on"Elucidating the Mechanism of Nucleation near the Gas-Liquid Spinodal"

Description: In a recent Letter [1], Bhimalapuram, Chakrabarty and Bagchi (BCB) study the phase transformation mechanism of the Lennard-Jones fluid and the non-conserved Ising model. They compute the free energy as a function of the size of the largest droplet of the stable phase. In apparent contradiction to classical nucleation theory (CNT), they find that in both systems the free energy develops a minimum at subcritical cluster sizes. In this Comment we argue that this minimum is specific to the chosen order parameter, and that the observed behavior is in fact consistent with CNT. CNT states that the free energy F(N) of a single cluster of size N is a concave function with a maximum at the critical nucleus size N{sub c}. BCB, on the other hand, calculate the probability distribution of N*, the size of the largest cluster in the system, and compute the free energy {beta}F*(N*) = -ln P(N*), where {beta} = 1/k{sub B}T. This order parameter does not measure the size of a single cluster. Instead, when sampling small values of N*, one measures the statistical weight of configurations in which all clusters are at most N* in size. Hence a free energy penalty is incurred when one constrains N* to values smaller than the largest average cluster in the simulation volume V. It is this penalty that causes the sudden increase of F* as N* {yields} 0 and the minimum at intermediate values of N*. We now illustrate how F(N) can be calculated from simulations. Our argument is intuitive but not exact, a formal derivation that yields an equivalent result can be found in Ref. 2. We choose the Ising model for concreteness. We aim to compute the probability that a given cluster has size N, where we imagine the center of the cluster to be fixed ...
Date: June 18, 2008
Creator: Maibaum, Lutz & Maibaum, Lutz
Partner: UNT Libraries Government Documents Department