63 Matching Results

Search Results

Advanced search parameters have been applied.

The Historical Development of the University of Texas of the Permian Basin, Odessa, Texas

Description: The University of Texas of the Permian Basin (UTPB) is a public university that serves over 4,500 undergraduate and graduate students as a branch of the University of Texas system located in Odessa, Ector County, Texas. The UTPB was established as an upper-division and graduate school on February 4, 1969, and first opened its doors to students in September, 1973. This historical study focuses on the development and progress of the UTPB from its inception until it was elevated from an upper-level institution to a four-year university twenty-two years later. The formation, mission, and curriculum are examined as well as are faculty and student characteristics and support. This study addresses the background history of higher education in the region, the role of community and college leaders in the UTPB's creation and struggle for four-year status, and the UTPB's unique features. The study was conducted by collecting data from available primary and secondary sources. The written data were then subjected to both external and internal criticism to determine the authorship and meaning of the documents. To explain events and put the written documents in context, oral histories, given by participants, were used. The educational opportunities offered by the UTPB have enriched the lives of Ector County citizens as well as the lives of many students from surrounding counties in the region of Texas known as the Permian Basin. Additional research topics related to the UTPB as well as other educational institutions are suggested.
Date: August 1994
Creator: Kern, Stephanie P.
Partner: UNT Libraries

Planning Strategically for Regional Development in the Permian Basin

Description: The Survey Research Center and the Center for Economic Development at the University of North Texas were retained by the Permian Basin Regional Planning Commission to assist them in developing a strategic plan for the region.
Date: June 2001
Creator: Weinstein, Bernard L.; Clower, Terry L.; Glass, James; Ruggierre, Paul; Durst, Samantha & Ver Duin, D'Arlene
Partner: UNT Center for Economic Development and Research

A study of student environmental knowledge and attitudes in selected high schools in the Permian Basin region of Texas

Description: The problem of this study is to assess the magnitude of the relationship between student knowledge of the environment, student gender, grade level, and size of school attended; and the level of attitudinal differences between the students based upon student gender, grade level, and the size of the school attended.
Date: December 1991
Creator: Manning, Sammy J. (Sammy Joe)
Partner: UNT Libraries

CO{sub 2} huff-n-puff process in a light oil shallow carbonate reservoir. Annual report, January 1, 1996--December 31, 1996

Description: The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations; a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Miscible CO{sub 2} flooding is the process of choice for enhancing recovery of light oils and already accounts for over 12% of the Permian Basin`s daily production. There are significant probable reserves associated with future miscible CO{sub 2} projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO{sub 2} H-n-P process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO{sub 2} projects when coupled together.
Date: January 1, 1998
Creator: Prieditis, J. & Wehner, S.
Partner: UNT Libraries Government Documents Department

Reviving Abandoned Reservoirs With High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

Description: The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.
Date: June 1, 2003
Creator: Loucks, Robert; Ruppel, Steve; Gale, Julia; Holder, Jon; Olsen, Jon; Combs, Deanna et al.
Partner: UNT Libraries Government Documents Department

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

Description: The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.
Date: January 31, 2004
Creator: Murphy, Mark B.
Partner: UNT Libraries Government Documents Department

Reviving Abandoned Reservoirs With High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

Description: The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. To this end it has commissioned several small consulting studies to technically support its effort to secure a partner. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and has written a thesis describing his research (titled ''Stimulating enhanced oil recovery (EOR) by high-pressure air injection (HPAI) in west Texas light oil reservoir''). We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete ...
Date: June 1, 2004
Creator: Loucks, Robert; Ruppel, Steve; Gale, Julia; Holder, Jon; Olson, Jon; Combs, Deanna et al.
Partner: UNT Libraries Government Documents Department

NATIONAL GEOSCIENCE DATA REPOSITORY SYSTEM PHASE III: IMPLEMENTATION AND OPERATION OF THE REPOSITORY

Description: In the past six months the NGDRS program has seen a new spike in activity, particularly in October 2000. This new spike in activity is the result of increased activities in the petroleum sector, including new funding to examine infrastructure issues facing many of the companies over the long-term. With industry conditions continuing to rapidly change and evolve, the primary core and cuttings preservation strategy has evolved as well. With the severe lack of available public data repository space and the establishment of a major national geoscience data repository facility unlikely in the near future, the focus is on increasing public awareness and access to nonproprietary company data holdings that remain in the public and private sector. Efforts still continue to identify and facilitate the entry of new repository space into the public sector. Additionally, AGI has been working with the National Academy of Sciences Board on Earth Sciences and Resources staff to initiate a study and workshop to develop a policy recommendation on geoscience data preservation and prioritization of efforts. Additional data transfer efforts were undertaken during the second half of FY00. Altura's Permian Basin core was contributed to the Texas BEG's facility in Midland. Transcription and evaluation of selected seismic data from the Santa Barbara Channel previously owned by Phillips was completed. Additionally, Chevron has released over 180,000 boxes of cores to the public through the NGDRS metadata catalog.
Date: December 1, 2000
Creator: Milling, Marcus
Partner: UNT Libraries Government Documents Department

Multidisciplinary Imaging of Rock Properties in Carbonate Reservoirs for Flow-Unit Targeting

Description: Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.
Date: February 1, 2005
Creator: Ruppel, Stephen C.
Partner: UNT Libraries Government Documents Department

Reviving Abandoned Reservoirs With High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

Description: The Bureau of Economic Geology (BEG) and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology (BEG) and the Department of Petroleum and Geosystems Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data were to be generated during the demonstration phase to improve the accuracy of the reservoir model. The demonstration phase has been delayed by Goldrus because of funding problems. Since the first of the year, Goldrus has been active in searching for partners to help finance the project. After financial support is obtained, the demonstration phase of the project will proceed. Since just after the beginning of the year, BEG has curtailed project activities and spending of DOE funds except for the continued support of one engineering student. This student has now completed his work and his thesis was reported on in the last semi-annual report. We plan to recommence our work on the project as soon as the operator obtains necessary funding to carry out the demonstration phase of the project. In order to complete all activities specified in the proposal, we requested and received an extension of the project to September 30, 2005. We are confident that Goldrus will obtain the necessary funding to continue and that ...
Date: January 1, 2005
Creator: Loucks, Robert; Ruppel, Steve; Gale, Julia; Holder, Jon & Olson, Jon
Partner: UNT Libraries Government Documents Department

Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonaradian Age) Reservoirs, West Texas and New Mexico

Description: Petrophysical heterogeneity in the South Wasson Clear Fork (SWCF) reservoir and other shallow-water platform carbonates in the Permian Basin and elsewhere is composed of a large-scale stratigraphically controlled component and a small-scale poorly correlated component. The large-scale variability exists as a flow-unit scale petrophysical layering that is laterally persistent at interwell scales and produces highly stratified reservoir behavior. Capturing the rate-enhancing effect of the small-scale variability requires carefully controlled averaging procedures at four levels of scaleup. Porosity can be easily scaled using arithmetic averaging procedures. Permeability, however, requires carefully controlled power-averaging procedures. Effective permeability is increased at every scaleup level.
Date: October 1, 2001
Creator: James W. Jennings, Jr. & Lucia, F. Jerry
Partner: UNT Libraries Government Documents Department

Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico

Description: This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock-fabric flow layers is described, (5) Clear Fork fractures are described and geomechanical modeling of fractures is investigated, and (6) most ...
Date: January 31, 2002
Creator: Lucia, F. Jerry
Partner: UNT Libraries Government Documents Department

Geoscience/engineering characterization of the interwell environment in carbonate reservoirs based on outcrop analogs, Permian Basin, West Texas and New Mexico--waterflood performance analysis for the South Cowden Grayburg Reservoir, Ector County, Texas. Final report

Description: A reservoir engineering study was conducted of waterflood performance in the South Cowden field, an Upper Permian Grayburg reservoir on the Central Basin Platform in West Texas. The study was undertaken to understand the historically poor waterflood performance, evaluate three techniques for incorporating petrophysical measurements and geological interpretation into heterogeneous reservoir models, and identify issues in heterogeneity modeling and fluid-flow scaleup that require further research. The approach included analysis of relative permeability data, analysis of injection and production data, heterogeneity modeling, and waterflood simulation. The poor South Cowden waterflood recovery is due, in part, to completion of wells in only the top half of the formation. Recompletion of wells through the entire formation is estimated to improve recovery in ten years by 6 percent of the original oil in place in some areas of the field. A direct three-dimensional stochastic approach to heterogeneity modeling produced the best fit to waterflood performance and injectivity, but a more conventional model based on smooth mapping of layer-averaged properties was almost as good. The results reaffirm the importance of large-scale heterogeneities in waterflood modeling but demonstrate only a slight advantage for stochastic modeling at this scale. All the flow simulations required a reduction to the measured whole-core k{sub v}/k{sub h} to explain waterflood behavior, suggesting the presence of barriers to vertical flow not explicitly accounted for in any of the heterogeneity models. They also required modifications to the measured steady-state relative permeabilities, suggesting the importance of small-scale heterogeneities and scaleup. Vertical flow barriers, small-scale heterogeneity modeling, and relative permeability scaleup require additional research for waterflood performance prediction in reservoirs like South Cowden.
Date: May 1, 1997
Creator: Jennings, J.W. Jr.
Partner: UNT Libraries Government Documents Department

CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

Description: The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.
Date: September 1, 1996
Creator: Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J. & Vogt, J.
Partner: UNT Libraries Government Documents Department

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico

Description: The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.
Date: December 31, 1998
Creator: Hoak, T.; Sundberg, K. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998

Description: Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.
Date: April 27, 1999
Creator: Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff et al.
Partner: UNT Libraries Government Documents Department

High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

Description: The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plan that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration will being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the U.S.
Date: December 10, 2003
Creator: Loucks, Robert; Ruppel, Steve; Gale, Julia; Holder, Jon; Olsen, Jon; Combs, Deanna et al.
Partner: UNT Libraries Government Documents Department

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

Description: The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower ...
Date: May 1, 2004
Creator: Dutton, Shirley P.; Kim, Eugene M.; Broadhead, Ronald F.; Breton, Caroline L.; Raatz, William D.; Ruppel, Stephen C. et al.
Partner: UNT Libraries Government Documents Department

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

Description: A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.
Date: April 1, 2003
Creator: Dutton, Shirley P.; Kim, Eugene M.; Broadhead, Ronald F.; Raatz, William; Breton, Cari; Ruppel, Stephen C. et al.
Partner: UNT Libraries Government Documents Department

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

Description: The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.
Date: October 31, 2003
Creator: Murphy, Mark B.
Partner: UNT Libraries Government Documents Department

EVALUATION OF THE FLOOD POTENTIAL OF THE SOUTH HOUSE (BLINEBRY) FIELD, LEA COUNTY, NEW MEXICO

Description: The Blinebry (Permian) formation of eastern Lea County, NM has a long history of exploitation for petroleum and continues even today to be a strong target horizon for new drilling in the Permian Basin. Because of this long-standing interest it should be classified of strategic interest to domestic oil production; however, the formation has gained a reputation as a primary production target with limited to no flooding potential. In late May of 1999, a project to examine the feasibility of waterflooding the Blinebry formation was proposed to the U.S. Department of Energy's National Petroleum Technology Office (Tulsa, OK). A new well was proposed in one region (the South House area) to examine the reputation by acquiring core and borehole logging data for the collection of formation property data in order to conduct the waterflood evaluation. Notice of the DOE award was received on August 19, 1999 and the preparations for drilling, coring and logging were immediately made for a drilling start on 9/9/99. The Blinebry formation at 6000 feet, foot depth was reached on 9/16/99 and the coring of two 60 foot intervals of the Blinebry was completed on 9/19/99 with more than 98% core recovery. The well was drilled to a total depth of 7800 feet and the Blinebry interval was logged with spectral gamma ray, photoelectric cross section, porosity, resistivity, and borehole image logs on 8/24/99. The well was determined to be likely productive from the Blinebry interval and five & 1/2 inch casing was cemented in the hole on 9/25/99. Detailed core descriptions including environment of deposition have been accomplished. Whole core (a 4-inch diameter) and plug (1.5 inch diameter) testing for formation properties has been completed and are reported. Acquisition and analysis of the borehole logging results have been completed and are reported. Perforation of the ...
Date: December 1, 2000
Creator: Melzer, L. Stephen
Partner: UNT Libraries Government Documents Department

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM

Description: The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.
Date: September 30, 2002
Creator: Murphy, Mark B.
Partner: UNT Libraries Government Documents Department

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, Nm

Description: The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.
Date: December 31, 2002
Creator: Murphy, Mark B.
Partner: UNT Libraries Government Documents Department

Application of Water-Jet Horizontal Drilling Technology to Drill and Acidize Horizontal Drain Holes, Tedbit (San Andres) Field, Gaines County, Texas

Description: The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.
Date: September 22, 2005
Creator: Rose, Michael W.
Partner: UNT Libraries Government Documents Department