20 Matching Results

Search Results

Advanced search parameters have been applied.

EXAFS Signatures of Structural Zn at Trace Levels in Layered Minerals

Description: Many in situ XAFS studies have shown that zinc incorporated in layered minerals is a major form of zinc in Zn-contaminated soils. Quantitative information on the local structural environment(s) and ordering of Zn in these minerals is required to better understand its behavior in soils. In this study, EXAFS spectroscopy was used to assess the structural environment of zinc incorporated at trace levels (40 ppm to 4,000 ppm) within the octahedral sheets of various natural and synthetic layered minerals. Results indicate that EXAFS data analyzed using ab initio FEFF calculations (FEFF 8.10) can unambiguously distinguish between zinc incorporation within the octahedral sheet of dioctahedral versus trioctahedral layered minerals and can determine the distribution (random or ordered) of zinc cations within the octahedral sheets of these minerals.
Date: December 13, 2006
Creator: Juillot, Farid; Morin, Guillaume; Hazemann, Jean-Louis; Proux, Olivier; Belin, Stephanie; Briois, Valerie et al.
Partner: UNT Libraries Government Documents Department

Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

Description: Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinic red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.
Date: December 13, 2006
Creator: van Hullenbusch, Eric; U., /Marne la Vallee; Farges, Francois; /Stanford U., Geo. Environ. Sci. /Museum Natl. Hist. Natur., Paris; Lenz, Markus; Lens, Piet et al.
Partner: UNT Libraries Government Documents Department

Chrysolcolla Redefined as Spertiniite

Description: XAFS and {mu}-XAFS spectra were collected at the Cu K-edge for seven chrysocolla samples (Peru, USA, and Congo). The results suggest that the local structure around Cu is similar to that in Cu(OH){sub 2} (spertiniite). Cu-L{sub 3} STXM imaging and spectroscopy confirm that the chrysocolla samples examined here consist of mesoscopic Cu(II)-rich domains surrounded by Si-rich domains (in agreement with results from infra-red spectroscopy). Hence, we suggest that chrysocolla, which is generally considered to be orthorhombic with composition (Cu,Al){sub 2}H{sub 2}Si{sub 2}O{sub 5}(OH){sub 4} {center_dot} nH{sub 2}O, is in actually a mesoscopic assemblage composed dominantly of spertiniite (Cu(OH){sub 2}), water and amorphous silica (SiO{sub 2}).
Date: December 13, 2006
Creator: Farges, Francois; /Museum Nat. Hist., Paris /Stanford U., Geo. Environ. Sci.; Benzerara, Karim; /Paris U., VI-VII, LMCP; Brown, Gordon E., Jr. & /Stanford U., Geo. Environ. Sci. /SLAC, SSRL
Partner: UNT Libraries Government Documents Department

PySpline: A Modern, Cross-Platform Program for the Processing of Raw Averaged XAS Edge and EXAFS Data

Description: PySpline is a modern computer program for processing raw averaged XAS and EXAFS data using an intuitive approach which allows the user to see the immediate effect of various processing parameters on the resulting k- and R-space data. The Python scripting language and Qt and Qwt widget libraries were chosen to meet the design requirement that it be cross-platform (i.e. versions for Windows, Mac OS X, and Linux). PySpline supports polynomial pre- and post-edge background subtraction, splining of the EXAFS region with a multi-segment polynomial spline, and Fast Fourier Transform (FFT) of the resulting k{sup 3}-weighted EXAFS data.
Date: January 8, 2007
Creator: Tenderholt, A.; Hedman, B. & Hodgson, K.O.
Partner: UNT Libraries Government Documents Department

Biogenic UO_2 _ Characterization and Surface Reactivity

Description: Nano-scale biogenic UO{sub 2} is easier to oxidize and more reactive to aqueous metal ions than bulk UO{sub 2}. In an attempt to understand these differences in properties, we have used a suite of bulk and surface characterization techniques to examine differences in the reactivity of biogenic UO{sub 2} versus bulk UO{sub 2} with respect to aqueous Zn(II). Precipitation of biogenic UO{sub 2} was mediated by Shewanella putrefaciens CN32, and the precipitates were washed using two protocols: (1) 5% NaOH, followed by 4 mM KHCO{sub 3}/KCl (NA-wash; ''NAUO2'', to remove surface organic matter), and (2) 4 mM KHCO{sub 3}-KCl (BI-wash; ''BIUO2'', to remove soluble uranyl species). BET surface areas of biogenic-UO{sub 2} prepared using the two protocols are 128.63 m{sup 2}g{sup -1} and 92.56 m{sup 2}g{sup -1}, respectively; particle sizes range from 2-10 nm as determined by FEG-SEM. Surface composition was probed using XPS, which showed a strong carbon 1s signal for the BI-washed samples; surface uranium is > 90% U(IV) for both washing protocols. U L{sub III}-edge XANES spectra also indicate that U(IV) is the dominant oxidation state in the biogenic UO{sub 2} samples. Fits of the EXAFS spectra of these samples yielded half the number of uranium second-shell neighbors relative to bulk UO{sub 2}, and no detectable oxygen neighbors beyond the first shell. At pH 7, the sorption of Zn(II) onto both biogenic and bulk UO{sub 2} is independent of electrolyte concentration, suggesting that Zn(II) sorption complexes are dominantly inner-sphere. Fits of Zn K-edge EXAFS spectra for biogenic UO{sub 2} indicate that Zn(II) sorption is dependent on the washing protocol. Zn-U pair correlations are observed for the NA-washed samples, but not for the BI-washed ones, suggesting that Zn(II) sorbs directly to the UO{sub 2} surface in the first case, and possibly to organic matter in the latter. Further ...
Date: January 3, 2007
Creator: Singer, D.M.; Farges, F.; Brown, G.E. & Jr.
Partner: UNT Libraries Government Documents Department

Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

Description: Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM) were combined to characterize various samples of geomicrobiological interest down to the nanometer scale. An approach based on energy-filtered imaging was used to examine microbe-mineral interactions and the resulting biominerals, as well as biosignatures in simplified laboratory samples. This approach was then applied to natural samples, including natural biofilms entombed in calcium carbonate precipitates and bioweathered silicates and facilitated location of bacterial cells and provided unique insights about their biogeochemical interactions with minerals at the 30-40 nm scale.
Date: January 3, 2007
Creator: Benzerara, K.; /Paris U., VI-VII, LMCP; Tyliszczak, T.; /LBNL, ALS; Brown, G.E., Jr. & /Stanford U., Geo. Environ. Sci. /SLAC, SSRL
Partner: UNT Libraries Government Documents Department

Sulfur K-Edge XAS and DFT Calculations on [Fe4S4]2+Clusters: Effects of H-bonding and Structural Distortion on Covalency and SpinTopology

Description: Sulfur K-edge X-ray absorption spectroscopy of a hydrogen-bonded elongated [Fe{sub 4}S{sub 4}]{sup 2+} cube is reported. The data show that this synthetic cube is less covalent than a normal compressed cube with no hydrogen bonding. DFT calculations reveal that the observed difference in electronic structure has significant contributions from both the cluster distortion and from hydrogen bonding. The elongated and compressed Fe{sub 4}S{sub 4} structures are found to have different spin topologies (i.e., orientation of the delocalized Fe{sub 2}S{sub 2} subclusters which are antiferromagnetically coupled to each other). It is suggested that the H-bonding interaction with the counterion does not contribute to the cluster elongation. A magneto-structural correlation is developed for the Fe{sub 4}S{sub 4} cube that is used to identify the redoxactive Fe{sub 2}S{sub 2} subclusters in active sites of HiPIP and ferredoxin proteins involving these clusters.
Date: September 28, 2006
Creator: Dey, A.; Roche, C.L.; Walters, M.A.; Hodgson, K.O.; B., Hedman; Solomon, E.I. et al.
Partner: UNT Libraries Government Documents Department

Sulfur K-Edge XAS and DFT Calculations on NitrileHydratase: Geometric and Electronic Structure of the Non-heme Iron Active Site

Description: The geometric and electronic structure of the active site of the non-heme iron enzyme nitrile hydratase (NHase) is studied using sulfur K-edge XAS and DFT calculations. Using thiolate (RS{sup -})-, sulfenate (RSO{sup -})-, and sulfinate (RSO{sub 2}{sup -})-ligated model complexes to provide benchmark spectral parameters, the results show that the S K-edge XAS is sensitive to the oxidation state of S-containing ligands and that the spectrum of the RSO- species changes upon protonation as the S-O bond is elongated (by {approx}0.1 {angstrom}). These signature features are used to identify the three cysteine residues coordinated to the low-spin Fe{sup III} in the active site of NHase as CysS{sup -}, CysSOH, and CysSO{sub 2}{sup -} both in the NO-bound inactive form and in the photolyzed active form. These results are correlated to geometry-optimized DFT calculations. The pre-edge region of the X-ray absorption spectrum is sensitive to the Z{sub eff} of the Fe and reveals that the Fe in [FeNO]{sup 6} NHase species has a Z{sub eff} very similar to that of its photolyzed Fe{sup III} counterpart. DFT calculations reveal that this results from the strong {pi} back-bonding into the {pi}* antibonding orbital of NO, which shifts significant charge from the formally t{sub 2}{sup 6} low-spin metal to the coordinated NO.
Date: September 28, 2006
Creator: Dey, Abhishek; Chow, Marina; /Stanford U., Chem. Dept.; Taniguchi, Kayoko; /Wako, RIKEN; Lugo-Mas, Priscilla et al.
Partner: UNT Libraries Government Documents Department

Adsorption and Precipitation of Aqueous Zn(II) on Hematite Nano- and Microparticles

Description: As part of a study of the effect of particle size on reactivity of hematite to aqueous metal ions, the sorption of Zn(II) on hematite nanoparticles and microparticles was examined over a wide range of Zn(II) concentrations using Zn K-edge EXAFS. When reacted with nanoparticles at pH 5.5 and low Zn(II) sorption densities (0.04 {le} {Lambda} < 2.76 imol/m{sup 2}), Zn(II) formed five-coordinated or a mixture of four- and six-coordinated surface complexes with an average Zn-O distance of 2.04({+-}0.02){angstrom}. At pH 5.5 and high Zn(II) sorption densities (2.76 {ge} {Lambda} {le} 3.70 mol/m{sup 2}), formation of surface precipitates is suggested based on the presence of second-shell Zn and multiple scattering features in the Fourier transform (FT) of the EXAFS spectra. EXAFS fitting of these high {Lambda} samples yielded an average first-shell Zn-O distance of 2.10({+-}0.02){angstrom}, with second-shell Zn-Fe and Zn-Zn distances of 3.23({+-}0.03){angstrom} and 3.31({+-}0.03){angstrom}, respectively. Qualitative comparison between the EXAFS spectra of these sorption samples and that of amorphous zinc hydroxide and Zn-bearing hydrotalcite indicates the development of surface precipitates with increasing {Lambda}. EXAFS spectra of Zn(II) sorbed on hematite microparticles under similar experimental conditions showed no evidence for surface precipitates even at the highest Zn surface coverage ({Lambda} = 4 {micro}mol/m{sup 2}). These results indicate that reactivities of hematite nanoparticles and macroparticles differ with respect to Zn(II)aq, depending on Zn(II) sorption density. We suggest that the degree of hematite crystallinity affects the reactivity of hematite surfaces toward Zn(II)aq and the formation of the Zn(II) surface complexes.
Date: December 13, 2006
Creator: Ha, Juyong; /Stanford U., Geo. Environ. Sci.; Farges, Francois; /Stanford U., Geo. Environ. Sci. /Museum Nat. Hist., Paris; Brown, Gordon E., Jr. & /SLAC, SSRL
Partner: UNT Libraries Government Documents Department

Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

Description: Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.
Date: December 13, 2006
Creator: Cances, Benjamin; U., /Marne La Vallee; Benedetti, Marc; /unknown; Farges, Francois; /Museum Natl. Hist. Natur., Paris /Stanford U., Geo. Environ. Sci. et al.
Partner: UNT Libraries Government Documents Department

Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\beta-lactamase

Description: Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, but its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.
Date: October 31, 2007
Creator: Brynes, Laura & Poly., /Rensselaer
Partner: UNT Libraries Government Documents Department

X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

Description: Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.
Date: September 27, 2006
Creator: Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; U., /Kansas et al.
Partner: UNT Libraries Government Documents Department

Science and Technology of Future Light Sources: A White Paper

Description: Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation ...
Date: February 3, 2009
Creator: Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray et al.
Partner: UNT Libraries Government Documents Department

Discovery of Unusual Minerals in Paleolithic Black Pigments from Lascaux (France) and Ekain (Spain)

Description: Analyses of archaeological materials aim to rediscover the know-how of Prehistoric people by determining the nature of the painting matter, its preparation mode, and the geographic origin of its raw materials. This study deals with identification of manganese oxides in black pigments by micro-XANES (X-ray absorption near-edge structure) based on previous TEM (transmission electron microscopy) studies. Complex mixtures of the manganese oxides studied are present in some of mankind's oldest known paintings, namely those from the caves of Lascaux (Dordogne, France) and Ekain (Basque country, Spain). Scarce manganese oxide minerals, including groutite, hausmannite, and manganite, were found for the first time in Paleolithic art at these archaeological sites. Because there are no known deposits of such minerals in these areas, more distant origins and trade routes are inferred. The closest known Mn-rich geological province for Lascaux is the central Pyrenees, which is {approx} 250 km from the Dordogne area.
Date: December 13, 2006
Creator: Chalmin, E.; Farges, F.; Vignaud, C.; Susini, J.; Menu, M. & Brown, G. E., Jr.
Partner: UNT Libraries Government Documents Department

Durability of Silicate Glasses: An Historical Approach

Description: We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.
Date: January 2, 2007
Creator: Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; U., /Marne la Vallee; Haddi, Amine; U., /Marne la Valle et al.
Partner: UNT Libraries Government Documents Department

On the Coordination of Actinides and Fission Products in Silicate Glasses

Description: The local structure around Th, U, Ce and Nd in leached silicate glasses was examined using XAFS spectroscopy at their L3 edges and also at the K edge of Fe, Co, Ni, Zr and Mo. Pellets of inactive borosilicate glasses with a simplified or a complex composition were leached statically at 90 C, at pH buffered to 0 or 6 for 28 days (surface/volume, S/V, ratios of 0.1 cm{sup -1}). These glasses are compared to another SON68 sample (denoted ''SP1'' in this paper) that was statically leached for 12 years under similar conditions, except for a higher S/V of 12 cm{sup -1} and a higher unconstrained pH of 9.6. The speciation of Fe, Co, Ni, Zr and Mo in the simple and the complex unleached are similar. In the statically leached glasses, the speciation of these transition metals is mostly identical to in the unleached glasses, except in the gels formed at the surface of the glasses leached at low pH, where large speciation differences are observed. Surface precipitates, especially for Fe (as ferrihydrite), Mo (possibly sidwillite) and Th (as ThO{sub 2}) were detected. Finally, the drying of the gels considerably affects the metal speciation by enhancing metal polymerization.
Date: December 13, 2006
Creator: Haddi, Anne; U., /Marne la Vallee; Farges, Francois; /Marne la Vallee U. /Museum Nat. Hist., Paris /Stanford U., Geo. Environ. Sci.; Trocellier, Patrick; /Saclay et al.
Partner: UNT Libraries Government Documents Department

Coordination Environments of Highly Charged Cations (Ti, Cr, and Light REE's) in Borosilicate Glass/Melts to 1120C

Description: The local environments around Ti, Cr, and several light rare-earth elements (La, Ce, and Nd) were investigated by in-situ XANES spectroscopy in a number of complex borosilicate glasses and melts (to 1120 C) that are used for nuclear waste storage. Examination of the high-resolution XANES spectra at the Ti K-edge shows that the average coordination of Ti changes from {approx}5 to {approx}4.5. Cr is dominantly trivalent in the melts studied. However, its average coordination is probably lower in the melt (tetrahedral ?) as revealed by the more intense Cr-K pre-edge feature. Ce also changes its average valence from dominantly +4 to +3.5 upon glass melting. These changes are reversible at T{sub g}, the glass transition temperature ({approx}500-550 C for these glasses). In contrast, the local environments of Nd, Pr, and La are unaffected by melting. Therefore, structural reorganization of these borosilicate glass/melts above T{sub g} is variable, not only in terms of valence (as for Ce) but also speciation (Ti and Cr). Both the ability of B to adopt various coordination geometries (triangular and tetrahedral) and the chemical complexity of the glass/melts explain these changes.
Date: January 2, 2007
Creator: Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Brown, Gordon E., Jr. & /Stanford U., Geo. Environ Sci. /SLAC, SSRL
Partner: UNT Libraries Government Documents Department

New Developments in Charge Transfer Multiplet Calculations: Projection Operations, Mixed-Spin States and pi-Bonding

Description: This paper presents a number of new additions to the charge transfer multiplet calculations as used in the calculation of L edge X-ray absorption spectra of 3d and 4d transition metal systems, both oxides and coordination compounds. The focus of the paper is on the consequences of the optimized spectral simulations for the ground state, where we make use of a recently developed projection technique. This method is also used to develop the concept of a mixed-spin ground state, i.e. a state that is a mixture of a high-spin and low-spin state due to spin-orbit coupling combined with strong covalency. The charge transfer mechanism to describe {pi}-bonding uses the mixing of the metal-to-ligand charge transfer (MLCT) channel in addition to the normal CT channel and allows for the accurate simulation of {pi}-bonding systems, for example cyanides.
Date: January 2, 2007
Creator: de Groot, F.M.F.; U., /Utrecht; Hocking, R.K.; /Stanford U., Chem. Dept.; Piamonteze, C.; /LBL, Berkeley et al.
Partner: UNT Libraries Government Documents Department