381 Matching Results

Search Results

Advanced search parameters have been applied.

A grating-less, fiber-based oscillator that generates 25 nJ pulses

Description: We report a passively mode-locked fiber-based oscillator that has no internal dispersion-compensating gratings. This design, the first of its kind, produces 25 nJ pulses at 80 MHz with the pulses compressible to 150 fs. The pulses appear to be self-similar and initial data imply that their energy is further scalable.
Date: December 28, 2006
Creator: An, J; Kim, D; Dawson, J W; Messerly, M J & Barty, C J
Partner: UNT Libraries Government Documents Department

Progress toward a MEMS fabricated 100 GHz oscillator.

Description: This report summarizes an LDRD effort which looked at the feasibility of building a MEMS (Micro-Electro-Mechanical Systems) fabricated 100 GHz micro vacuum tube. PIC Simulations proved to be a very useful tool in investigating various device designs. Scaling parameters were identified. This in turn allowed predictions of oscillator growth based on beam parameters, cavity geometry, and cavity loading. The electron beam source was identified as a critical element of the design. FEA's (Field Emission Arrays) were purchased to be built into the micro device. Laboratory testing of the FEA's was also performed which pointed out care and handling issues along with maximum current capabilities. Progress was made toward MEMS fabrication of the device. Techniques were developed and successfully employed to build up several of the subassemblies of the device. However, the lower wall fabrication proved to be difficult and a successful build was not completed. Alternative approaches to building this structure have been identified. Although these alternatives look like good solutions for building the device, it was not possible to complete a redesign and build during the timeframe of this effort.
Date: February 1, 2006
Creator: Loubriel, Guillermo Manuel; Lemp, Thomas; Weyn, Mark L.; Coleman, Phillip Dale & Rowley, James E. (SAIC, Albuquerque, NM)
Partner: UNT Libraries Government Documents Department

Phase patterns of coupled oscillators with application to wireless communication

Description: Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.
Date: January 2, 2008
Creator: Arenas, A.
Partner: UNT Libraries Government Documents Department

On the modeling, design and validation of two dimensional quasi-static eddy current forces in a mechanical oscillator.

Description: Damping vibrations is important in the design of some types of inertial sensing devices. One method for adding damping to a device is to use magnetic forces generated by a static magnetic field interacting with eddy currents. In this report, we develop a 2-dimensional finite element model for the analysis of quasistatic eddy currents in a thin sheet of conducting material. The model was used for design and sensitivity analyses of a novel mechanical oscillator that consists of a shuttle mass (thin sheet of conducting material) and a set of folded spring elements. The oscillator is damped through the interaction of a static magnetic field and eddy currents in the shuttle mass. Using a prototype device and Laser Dopler Velocimetry (LDV), measurements were compared to the model in a validation study using simulation based uncertainty analyses. Measurements were found to follow the trends predicted by the model.
Date: October 1, 2005
Creator: Mitchell, John Anthony; Epp, David S. & Wittwer, Jonathan W.
Partner: UNT Libraries Government Documents Department

Stable local oscillator microcircuit.

Description: This report gives a description of the development of a Stable Local Oscillator (StaLO) Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. The StaLO uses a comb generator followed by surface acoustic wave (SAW) filters. The comb generator creates a set of harmonic components of the 100MHz input signal. The SAW filters are narrow bandpass filters that are used to select the desired component and reject all others. The resulting circuit has very low sideband power levels and low phase noise (both less than -40dBc) that is limited primarily by the phase noise level of the input signal.
Date: October 1, 2006
Creator: Brocato, Robert Wesley
Partner: UNT Libraries Government Documents Department

Stable local oscillator module.

Description: This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.
Date: November 1, 2007
Creator: Brocato, Robert Wesley
Partner: UNT Libraries Government Documents Department

Development system performance issues of the NIF master oscillator and pulse forming networking

Description: A crucial step in the development of a complex laser system is initial testing of an integrated system. Issues arise at the system level which are not easily observed in component level testing. The NIF master oscillator room (MOR) contains a network of fiber and integrated optic components which can interact, potentially reducing system performance. Here we present some of the system problems we have seen in integrated tests and our solutions. Issues include ASE in the fiber amplifiers, filtering effects in the PM fiber, and regulation of average optical power.
Date: October 29, 1998
Creator: Browning, D; Dreifuerst, G; Penko, F; Rothenberg, J & Wilcox, R
Partner: UNT Libraries Government Documents Department

An Experimental Study of an FEL Oscillator with a Linear Taper

Description: Motivated by the work of Saldin, Schneidmiller and Yurkov, we have measured the detuning curve widths, spectral characteristics, efficiency, and energy spread as a function of the taper for low and high Q resonators in the IR Demo FEL at Jefferson Lab. Both positive and negative tapers were used. Gain and frequency agreed reasonably well with the predictions of a single mode theory. The efficiency agreed reasonably well for a negative taper with a high Q resonator but disagreed for lower Q values due to the large slippage parameter and the non-ideal resonator Q. We saw better efficiency for a negative taper than for the same positive taper. The energy spread induced in the beam, normalized to the efficiency is larger for the positive taper than for the corresponding negative taper. This indicates that a negative taper is preferred over a positive taper in an energy recovery FEL.
Date: January 1, 2001
Creator: Benson, S.; Gubeli, J. & Neil, G.R.
Partner: UNT Libraries Government Documents Department

[x, p] = i{h_bar} ?

Description: Heisenberg`s commutation relation for position x and momentum p, and its validity for relativistic harmonic oscillators are examined, using the techniques of Lie algebra and dual-bosonic representation of x, p and the Hamiltonian H. A modification with [x, p] =i{h_bar}({minus_plus} 1 + H/m{sub 0}c{sup 2}) is proposed for a particle and an antiparticle in a harmonic potential. For a 2 {times} 2 matrix representation for x, p and H operators, the quantized eigenenergy E is given by (E - m{sub 0}c{sup 2})/{h_bar}{omega} = 3/2, 5/2, 7/2, ..., where 1/2 is not allowed.
Date: March 1, 1996
Creator: Tang, Jau
Partner: UNT Libraries Government Documents Department

DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER).

Description: The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.
Date: September 3, 2002
Creator: JAMES, DANIEL F
Partner: UNT Libraries Government Documents Department

Using the thermal Gaussian approximation approximation for theBoltzmann Operator in Semiclassical Initial Value Time CorrelationFunctions

Description: The thermal Gaussian approximation (TGA) recently developed by Mandelshtam et al has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-{beta}H) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the 'forward-backward semiclassical dynamics' (FBSD) approximation developed by Makri et al. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
Date: September 6, 2006
Creator: Liu, Jian & Miller, William H.
Partner: UNT Libraries Government Documents Department

System characterization in nonlinear random vibration

Description: Linear structural models are frequently used for structural system characterization and analysis. In most situations they can provide satisfactory results, but under some circumstances they are insufficient for system definition. The present investigation proposes a model for nonlinear structure characterization, and demonstrates how the functions describing the model can be identified using a random vibration experiment. Further, it is shown that the model is sufficient to completely characterize the stationary random vibration response of a structure that has a harmonic frequency generating form of nonlinearity. An analytical example is presented to demonstrate the plausibility of the model.
Date: January 1, 1986
Creator: Paez, T.L. & Gregory, D.L.
Partner: UNT Libraries Government Documents Department

Nano-electromechanical oscillators (NEMOs) for RF technologies.

Description: Nano-electromechanical oscillators (NEMOs), capacitively-coupled radio frequency (RF) MEMS switches incorporating dissipative dielectrics, new processing technologies for tetrahedral amorphous carbon (ta-C) films, and scientific understanding of dissipation mechanisms in small mechanical structures were developed in this project. NEMOs are defined as mechanical oscillators with critical dimensions of 50 nm or less and resonance frequencies approaching 1 GHz. Target applications for these devices include simple, inexpensive clocks in electrical circuits, passive RF electrical filters, or platforms for sensor arrays. Ta-C NEMO arrays were used to demonstrate a novel optomechanical structure that shows remarkable sensitivity to small displacements (better than 160 fm/Hz {sup 1/2}) and suitability as an extremely sensitive accelerometer. The RF MEMS capacitively-coupled switches used ta-C as a dissipative dielectric. The devices showed a unipolar switching response to a unipolar stimulus, indicating the absence of significant dielectric charging, which has historically been the major reliability issue with these switches. This technology is promising for the development of reliable, low-power RF switches. An excimer laser annealing process was developed that permits full in-plane stress relaxation in ta-C films in air under ambient conditions, permitting the application of stress-reduced ta-C films in areas where low thermal budget is required, e.g. MEMS integration with pre-existing CMOS electronics. Studies of mechanical dissipation in micro- and nano-scale ta-C mechanical oscillators at room temperature revealed that mechanical losses are limited by dissipation associated with mechanical relaxation in a broad spectrum of defects with activation energies for mechanical relaxation ranging from 0.35 eV to over 0.55 eV. This work has established a foundation for the creation of devices based on nanomechanical structures, and outstanding critical research areas that need to be addressed for the successful application of these technologies have been identified.
Date: December 1, 2004
Creator: Wendt, Joel Robert; Czaplewski, David A.; Gibson, John Murray (Argonne National Laboratory, Argonne, IL); Webster, James R.; Carton, Andrew James; Keeler, Bianca Elizabeth Nelson et al.
Partner: UNT Libraries Government Documents Department

Evidence for bifurcation and universal chaotic behavior in nonlinear semiconducting devices

Description: Bifurcations, chaos, and extensive periodic windows in the chaotic regime are observed for a driven LRC circuit, the capacitive element being a nonlinear varactor diode. Measurements include power spectral analysis; real time amplitude data; phase portraits; and a bifurcation diagram, obtained by sampling methods. The effects of added external noise are studied. These data yield experimental determinations of several of the universal numbers predicted to characterize nonlinear systems having this route to chaos.
Date: January 1, 1982
Creator: Testa, J.; Perez, J. & Jeffries, C.
Partner: UNT Libraries Government Documents Department

Supercoherent states and physical systems

Description: A method is developed for obtaining coherent states of a system admitting a supersymmetry. These states are called supercoherent states. The approach presented in this talk is based on an extension to supergroups of the usual group-theoretic approach. The example of the supersymmetric harmonic oscillator is discussed, thereby illustrating some of the attractive features of the method. Supercoherent states of an electron moving in a constant magnetic field are also described. 35 refs.
Date: January 1, 1991
Creator: Fatyga, B.W.; Kostelecky, V.A. (Indiana Univ., Bloomington, IN (USA). Dept. of Physics); Nieto, M.M. (Los Alamos National Lab., NM (USA)) & Truax, D.R. (Calgary Univ., AB (Canada). Dept. of Chemistry)
Partner: UNT Libraries Government Documents Department

Test results for 320 nm and 390 nm remote sensing sources using a 150 mJ, 100 Hz repetition rate, injection-seeded diode-pumped Nd:YAG slab-laser developed by Coherent Technologies, Inc.

Description: This report describes results of tests using a laser system designed by Coherent Technologies, Inc., in conjunction with Sandia developed nonlinear optics technology. Test results are described for three different optical parametric oscillators built at Sandia. The report concludes with recommendations for future work.
Date: July 1, 2005
Creator: Armstrong, Darrell Jewell
Partner: UNT Libraries Government Documents Department

New tunable lasers for potential use in LIDAR systems

Description: We discuss the optical and laser properties of two new tunable laser crystals, Ce:LiSrAlF{sub 6} and Cr:ZnSe. These crystals are unique in that they provide a practical alternative to optical parametric oscillators as a means of generating tunable radiation in the near ultraviolet and mid-infrared regions (their tuning ranges are at least 285-315 nm and 2.2-2.8 microns, respectively). While these crystals are relatively untested in field deployment, they are promising and likely to be useful in the near future.
Date: June 1996
Creator: Payne, S. A.; Page, R. H.; Marshall, C. D.; Schaffers, K. I.; Bayramian, A. J. & Krupke, W. F.
Partner: UNT Libraries Government Documents Department

Development of a GaAs Monolithic Surface Acoustic Wave Integrated Circuit

Description: An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.
Date: March 8, 1999
Creator: Baca, A.G.; Casalnuovo, S.C.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M. et al.
Partner: UNT Libraries Government Documents Department

Chemical class specificity using self-assembled monolayers on SAW devices

Description: We have studied the chemical selectivity and sensitivity of surface acoustic wave (SAW) sensors covered by (COO{sup {minus}}){sub 2}/Cu{sup 2+}-terminated interfaces by examining the response of self-assembled monolayer (SAM) films formed from the solution phase for 36, 84, and 180 h adsorption times. These organomercaptan SAMs were prepared on thin-film Au surfaces having variable, controlled grain size. The SAW response from the carboxylate coordinated Cu{sup 2+}-terminated SAM is compared to that from methyl-terminated SAM, as these films interact with a vapor-phase organophosphonate analyte and the vapors of common organic solvents. Results have implications for designing and reliably fabricating chemical sensors that respond to specific organic analytes.
Date: June 1, 1996
Creator: Thomas, R.C.; Ricco, A.J.; Yang, H.C.; Dermody, D. & Crooks, R.M.
Partner: UNT Libraries Government Documents Department