2 Matching Results

Search Results

Advanced search parameters have been applied.
Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Synchrotron Radiation X-Ray Diffraction of Nickel-Titanium Shape Memory Alloy Wires During Mechanical Deformation

Description: Shape memory alloys (SMAs) are a new generation material which exhibits unique nonlinear deformations due to a phase transformation which allows it to return to its original shape after removal of stress or a change in temperature. It shows a shape memory effect (martensitic condition) and pseudoelasticity (austenitic condition) properties depends on various heat treatment conditions. The reason for these properties depends on phase transformation through temperature changes or applied stress. Many technological applications of austenite SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this thesis, I investigated two important mechanical feature to fatigue behavior in pseudoelastic NiTi SMA wires using high energy synchrotron radiation X-ray diffraction (SR-XRD). The first of these involved simple bending and the second of these involved relaxation during compression loading. Differential scanning calorimetry (DSC) was performed to identify the phase transformation temperatures. Scanning electron microscopy (SEM) images were collected for the initial condition of the NiTi SMA wires and during simple bending, SEM revealed that micro-cracks in compression regions of the wire propagate with increasing bend angle, while tensile regions tend to not exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (100), (110), and (101) planes, intensities and residual strain values exhibit strong anisotropy depending upon whether the sample is in compression or tension during simple bending. This research provides insight into two specific mechanical features in pseudoelastic NiTi SMA wires.
Date: December 2015
Creator: Zhang, Baozhuo
Partner: UNT Libraries

Microstructural Evolution and Mechanical Response of Materials by Design and Modeling

Description: Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction ...
Date: May 2017
Creator: Dutt, Aniket Kumar
Partner: UNT Libraries