14 Matching Results

Search Results

Advanced search parameters have been applied.

Multi-Megawatt Power System Trade Study

Description: A concept study was undertaken to evaluate potential multi-megawatt power sources for nuclear electric propulsion. The nominal electric power requirement was set at 15 MWe with an assumed mission profile of 120 days at full power, 60 days in hot standby, and another 120 days of full power, repeated several times for 7 years of service. Two configurations examined were (1) a gas-cooled reactor based on the NERVA Derivative design, operating a closed cycle Brayton power conversion system; and (2) a molten metal-cooled reactor based on SP-100 technology, driving a boiling potassium Rankine power conversion system. This study considered the relative merits of these two systems, seeking to optimize the specific mass. Conclusions were that either concept appeared capable of approaching the specific mass goal of 3-5 kg/kWe estimated to be needed for this class of mission, though neither could be realized without substantial development in reactor fuels technology, thermal radiator mass efficiency, and power conversion and distribution electronics systems capable of operating at high temperatures. The gas-Brayton systems showed an apparent specific mass advantage (3.53 vs 6.43 kg/kWe for the baseline cases) under the set of assumptions used, but reconciling differences in conservatism in the design algorithms used would make results much more comparable. Brayton systems eliminate the need to deal with two-phase working fluid flows in the microgravity environment of space.
Date: February 1, 2002
Creator: Longhurst, Glen Reed; Schnitzler, Bruce Gordon & Parks, Benjamin Travis
Partner: UNT Libraries Government Documents Department

Fission with cold neutrons

Description: As NASA continues the exploration of deep space, there is a need for safe, reliable, and long-lasting source of energy. Solar cells, which are useful at the inner solar system, cannot provide adequate power for a spacecraft once it has passed beyond Jupiter's orbit. For missions to the outer planets, NASA has relied on radioisotope thermoelectric generators (RTGs) using 238Pua s a heat source. RTGs are an excellent power conversion technology but, unfortunately, 238Pu is a potential environmental hazard. In the past, the use of 238Pu has generated much controversy and turmoil. Its use in future missions is doubtful because of environmental concerns. This paper presents calculations performed with MCNP for a power source that will take advantage of the low temperatures found in deep space.
Date: January 1, 2002
Creator: Sanchez, R. G. (Rene G.)
Partner: UNT Libraries Government Documents Department

Initial tests of thermoacoustic space power engine.

Description: Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.
Date: January 1, 2002
Creator: Backhaus, S. N. (Scott N.)
Partner: UNT Libraries Government Documents Department

Safe testing nuclear rockets economically

Description: Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.
Date: January 1, 2002
Creator: Howe, S. D. (Steven D.); Travis, B. J. (Bryan J.) & Zerkle, D. K. (David K.)
Partner: UNT Libraries Government Documents Department

Fundamental Thermal Fluid Physics of High Temperature Flows in Advanced Reactor Systems - Nuclear Energy Research Initiative Program Interoffice Work Order (IWO) MSF99-0254 Final Report for Period 1 August 1999 to 31 December 2002

Description: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of advanced reactors for higher efficiency and enhanced safety and for deployable reactors for electrical power generation, process heat utilization and hydrogen generation. While key applications would be advanced gas-cooled reactors (AGCRs) using the closed Brayton cycle (CBC) for higher efficiency (such as the proposed Gas Turbine - Modular Helium Reactor (GT-MHR) of General Atomics [Neylan and Simon, 1996]), results of the proposed research should also be valuable in reactor systems with supercritical flow or superheated vapors, e.g., steam. Higher efficiency leads to lower cost/kwh and reduces life-cycle impacts of radioactive waste (by reducing waters/kwh). The outcome will also be useful for some space power and propulsion concepts and for some fusion reactor concepts as side benefits, but they are not the thrusts of the investigation. The objective of the project is to provide fundamental thermal fluid physics knowledge and measurements necessary for the development of the improved methods for the applications.
Date: December 31, 2002
Creator: McEligot, D.M.; Condie, K.G.; Foust, T.D.; McCreery, G.E.; Pink, R.J.; Stacey, D.E. (INEEL) et al.
Partner: UNT Libraries Government Documents Department

Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for April 1, 2002 Through September 20, 2002

Description: The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.
Date: December 3, 2002
Creator: Moore, J.P.
Partner: UNT Libraries Government Documents Department

Thermoelectric Development at Hi-Z Technology

Description: An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.
Date: August 25, 2002
Creator: Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David et al.
Partner: UNT Libraries Government Documents Department

The SNAP near infrared detectors

Description: The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.
Date: July 29, 2002
Creator: Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E. et al.
Partner: UNT Libraries Government Documents Department

Grain Growth Behavior, Tensile Impact Ductility, and Weldability of Cerium-Doped Iridium Alloys

Description: An iridium alloy doped with small amounts of cerium and thorium is being developed as a potential replacement for the iridium-based DOP-26 alloy (doped with thorium only) that is currently used by the National Aeronautics and Space Administration (NASA) for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the iridium-based alloy (designated as DOP-40) containing both cerium and thorium. Included within this report are data on grain growth of sheet material in vacuum and low-pressure oxygen environments, grain growth in vacuum of the clad vent set cup material, weldability, and the effect of grain size and test temperature on tensile properties. Where applicable, data for the DOP-26 alloy are included for comparison. Both grain size and grain-boundary cohesion affect the ductility of iridium alloys. In this study it was found that cerium and thorium, when added together, refine grain size more effectively than when thorium is added by itself (especially at high temperatures). In addition, the effect of cerium additions on grain-boundary cohesion is similar to that of thorium. Mechanical testing at both low ({approx} 10{sup -3}s{sup -1}) and high ({approx} 10{sup -3}s{sup -1}) strain rates showed that the Ce/Th-doped alloys have tensile ductilities that are as good or better than the DOP-26 alloy. The general conclusion from these studies is that cerium can be used to replace some of the radioactive thorium currently used in DOP-26 while maintaining or improving its metallurgical properties. The current DOP-26 alloy meets all requirements for cladding the radioactive fuel in the RTG heat source, but the new ...
Date: May 28, 2002
Creator: McKamey, C.G.
Partner: UNT Libraries Government Documents Department

Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

Description: Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.
Date: February 1, 2002
Creator: Doyle, G. N.
Partner: UNT Libraries Government Documents Department

Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

Description: Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is ...
Date: August 13, 2002
Creator: Anghaie, Samim
Partner: UNT Libraries Government Documents Department

Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2001 Through March 31, 2002

Description: The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.
Date: May 22, 2002
Creator: J. P. Moore, JPM
Partner: UNT Libraries Government Documents Department

A Nuclear Microbattery for MEMS Devices

Description: This project was designed to demonstrate the feasibility of producing on-board power for MEMS devices using radioisotopes. MEMS is a fast growing field, with hopes for producing a wide variety of revolutionary applications, including ''labs on a chip,'' micromachined scanning tunneling microscopes, microscopic detectors for biological agents, microsystems for DNA identification, etc. Currently, these applications are limited by the lack of an on-board power source. Research is ongoing to study approaches such as fuel cells, fossil fuels, and chemical batteries, but all these concepts have limitations. For long-lived, high energy density applications, on-board radioisotope power offers the best choice. We have succeeded in producing such devices using a variety of isotopes, incorporation methods, and device geometries. These experiments have demonstrated the feasibility of using radioisotope power and that there are a variety of options available for MEMS designers. As an example of an integrated, self-powered application, we have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work will demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly. Thus, this will be the first self-powered wireless transmitter available for use in MEMS devices, permitting such applications as sensors embedded in buildings for continuous monitoring of the building performance and integrity.
Date: August 20, 2002
Creator: Blanchard, James; Henderson, Douglass & Lal, Amit
Partner: UNT Libraries Government Documents Department