1,715 Matching Results

Search Results

Advanced search parameters have been applied.

Outlook and Challenges for Chinese Coal

Description: China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest ...
Date: June 20, 2008
Creator: Aden, Nathaniel T.; Fridley, David G. & Zheng, Nina
Partner: UNT Libraries Government Documents Department

Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information

Description: Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The authors recognize that several of their assumptions to the contrary are incorrect and that their estimates therefore provide at best an upper bound to the emissions degradation caused by fluctuating output. Yet they still present the strong conclusion: 'Carbon dioxide emissions reductions are likely to be 75-80% of those presently assumed by policy makers. We have shown that the conventional method used to calculate emissions is inaccurate, particularly for NO{sub x} emissions.' The inherently problematic methodology used by the authors makes such strong conclusions suspect. Specifically, assuming that each variable plant requires a dedicated natural gas backup plant to create ...
Date: March 18, 2009
Creator: Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael & O'Malley, Mark
Partner: UNT Libraries Government Documents Department

Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

Description: This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.
Date: June 1, 2009
Creator: Jr., George J. Koperna; Kuuskraa, Vello A.; Riestenberg, David E.; Sultana, Aiysha & Leeuwen, Tyler Van
Partner: UNT Libraries Government Documents Department

Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

Description: As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.
Date: January 1, 2007
Creator: Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T. & Zupanic, John W.
Partner: UNT Libraries Government Documents Department

Final Technical Report, Oct 2004 - Nov. 2006, High Performance Flexible Reversible Solid Oxide Fuel Cell

Description: This report summarizes the work performed for the program entitled “High Performance Flexible Reversible Solid Oxide Fuel Cell” under Cooperative Agreement DE-FC36-04GO14351 for the U. S. Department of Energy. The overall objective of this project is to demonstrate a single modular stack that generates electricity from a variety of fuels (hydrogen and other fuels such as biomass, distributed natural gas, etc.) and when operated in the reverse mode, produces hydrogen from steam. This project has evaluated and selected baseline cell materials, developed a set of materials for oxygen and hydrogen electrodes, and optimized electrode microstructures for reversible solid oxide fuel cells (RSOFCs); and demonstrated the feasibility and operation of a RSOFC multi-cell stack. A 10-cell reversible SOFC stack was operated over 1000 hours alternating between fuel cell (with hydrogen and methane as fuel) and steam electrolysis modes. The stack ran very successfully with high power density of 480 mW/cm2 at 0.7V and 80% fuel utilization in fuel cell mode and >6 SLPM hydrogen production in steam electrolysis mode using about 1.1 kW electrical power. The hydrogen generation is equivalent to a specific capability of 2.59 Nm3/m2 with electrical energy demand of 3 kWh/Nm3. The performance stability in electrolysis mode was improved vastly during the program with a degradation rate reduction from 8000 to 200 mohm-cm2/1000 hrs. This was accomplished by increasing the activity and improving microstructure of the oxygen electrode. Both cost estimate and technology assessment were conducted. Besides the flexibility running under both fuel cell mode and electrolysis mode, the reversible SOFC system has the potentials for low cost and high efficient hydrogen production through steam electrolysis. The cost for hydrogen production at large scale was estimated at ~$2.7/kg H2, comparing favorably with other electrolysis techology.
Date: February 21, 2007
Creator: Guan, Jie & Minh, Nguyen
Partner: UNT Libraries Government Documents Department

Case Study of the California Cement Industry

Description: California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.
Date: May 1, 2005
Creator: Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn & Friedmann, Rafael
Partner: UNT Libraries Government Documents Department

Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

Description: High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.
Date: June 1, 2005
Creator: Wiser, Ryan & Bolinger, Mark
Partner: UNT Libraries Government Documents Department

A combined saline formation and gas reservoir CO2 injection pilotin Northern California

Description: A geologic sequestration pilot in the Thornton gas field in Northern California, USA involves injection of up to 4000 tons of CO{sub 2} into a stacked gas and saline formation reservoir. Lawrence Berkeley National Laboratory (LBNL) is leading the pilot test in collaboration with Rosetta Resources, Inc. and Calpine Corporation under the auspices of the U.S. Department of Energy and California Energy Commission's WESTCARB, Regional Carbon Sequestration Partnership. The goals of the pilot include: (1) Demonstrate the feasibility of CO{sub 2} storage in saline formations representative of major geologic sinks in California; (2) Test the feasibility of Enhanced Gas Recovery associated with the early stages of a CO{sub 2} storage project in a depleting gas field; (3) Obtain site-specific information to improve capacity estimation, risk assessment, and performance prediction; (4) Demonstrate and test methods for monitoring CO{sub 2} storage in saline formations and storage/enhanced recovery projects in gas fields; and (5) Gain experience with regulatory permitting and public outreach associated with CO{sub 2} storage in California. Test design is currently underway and field work begins in August 2006.
Date: April 28, 2006
Creator: Trautz, Robert; Myer, Larry; Benson, Sally; Oldenburg, Curt; Daley, Thomas & Seeman, Ed
Partner: UNT Libraries Government Documents Department

Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

Description: The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.
Date: June 30, 2005
Creator: Wong-Parodi, Gabrielle; Dale, Larry & Lekov, Alex
Partner: UNT Libraries Government Documents Department

Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

Description: On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we ...
Date: December 6, 2006
Creator: Bolinger, Mark & Wiser, Ryan
Partner: UNT Libraries Government Documents Department

Balancing Cost and Risk: The Treatment of Renewable Energy inWestern Utility Resource Plans

Description: Markets for renewable electricity have grown significantly in recent years, motivated in part by federal tax incentives and in part by state renewables portfolio standards and renewable energy funds. State renewables portfolio standards, for example, motivated approximately 45% of the 4,300 MW of wind power installed in the U.S. from 2001 through 2004, while renewable energy funds supported an additional 15% of these installations. Despite the importance of these state policies, a less widely recognized driver for renewable energy market growth is poised to also play an important role in the coming years: utility integrated resource planning (IRP). Formal resource planning processes have re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, recent resource plans contemplate a significant amount of renewable energy additions. These planned additions - primarily coming from wind power - are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. The treatment of renewable energy in utility resource plans is not uniform, however. Assumptions about the direct and indirect costs of renewable resources, as well as resource availability, differ, as do approaches to incorporating such resources into the candidate portfolios that are analyzed in utility IRPs. The treatment of natural gas price risk, as well as the risk of future environmental regulations, also varies substantially. How utilities balance expected portfolio cost versus risk in selecting a preferred portfolio also differs. Each of these variables may have a substantial effect on the degree to which renewable energy contributes to the preferred portfolio of each utility IRP. This article, which is based on ...
Date: September 1, 2005
Creator: Wiser, Ryan & Bolinger, Mark
Partner: UNT Libraries Government Documents Department

Hydrogen production by water dissociation using ceramic membranes. Annual report for FY 2007.

Description: The objective of this project is to develop dense ceramic membranes that, without using an external power supply or circuitry, can produce hydrogen via coal/coal gas-assisted water dissociation. This project grew out of an effort to develop a dense ceramic membrane for separating hydrogen from gas mixtures such as those generated during coal gasification, methane partial oxidation, and water-gas shift reactions [1]. That effort led to the development of various cermet (i.e., ceramic/metal composite) membranes that enable hydrogen to be produced by two methods. In one method, a hydrogen transport membrane (HTM) selectively removes hydrogen from a gas mixture by transporting it through either a mixed protonic/electronic conductor or a hydrogen transport metal. In the other method, an oxygen transport membrane (OTM) generates hydrogen mixed with steam by removing oxygen that is generated through water splitting [1, 2]. This project focuses on the development of OTMs that efficiently produce hydrogen via the dissociation of water. Supercritical boilers offer very high-pressure steam that can be decomposed to provide pure hydrogen by means of OTMs. Oxygen resulting from the dissociation of steam can be used for coal gasification, enriched combustion, or synthesis gas production. Hydrogen and sequestration-ready CO{sub 2} can be produced from coal and steam by using the membrane being developed in this project. Although hydrogen can also be generated by high-temperature steam electrolysis, producing hydrogen by water splitting with a mixed-conducting membrane requires no electric power or electrical circuitry.
Date: March 4, 2008
Creator: Balachandran, U.; Chen, L.; Dorris, S. E.; Emerson, J. E.; Lee, T. H.; Park, C. Y. et al.
Partner: UNT Libraries Government Documents Department

Overview of interstate hydrogen pipeline systems.

Description: The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of ...
Date: February 1, 2008
Creator: Gillette, J .L. & Kolpa, R. L
Partner: UNT Libraries Government Documents Department

Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

Description: This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.
Date: March 15, 2006
Creator: Oldenburg, Curtis M.
Partner: UNT Libraries Government Documents Department

Miscellaneous: Uruguay energy supply options study assessing the market for natural gas - executive summary.

Description: Uruguay is in the midst of making critical decisions affecting the design of its future energy supply system. Momentum for change is expected to come from several directions, including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country's membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay. The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay's energy supply system. The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries. The Government of Uruguay has contracted with Argonne National Laboratory (ANL) to study several energy development scenarios with the support of several Uruguayan institutions. Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios.
Date: March 4, 2008
Creator: Conzelmann, G.; Veselka, T. & Sciences, Decision and Information
Partner: UNT Libraries Government Documents Department


Description: The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/π, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force ...
Date: June 30, 2008
Creator: Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W. & Babu, Sundarsanam
Partner: UNT Libraries Government Documents Department

Proceedings of the North Aleutian Basin information status and research planning meeting.

Description: The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis ...
Date: October 26, 2007
Creator: LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L. et al.
Partner: UNT Libraries Government Documents Department

Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

Description: The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining ...
Date: January 31, 2008
Creator: Stull, E.A.; Hlohowskyj, I.; LaGory, K. E. & Division, Environmental Science
Partner: UNT Libraries Government Documents Department

Trip report for field visit to Fayetteville Shale gas wells.

Description: This report describes a visit to several gas well sites in the Fayetteville Shale on August 9, 2007. I met with George Sheffer, Desoto Field Manager for SEECO, Inc. (a large gas producer in Arkansas). We talked in his Conway, Arkansas, office for an hour and a half about the processes and technologies that SEECO uses. We then drove into the field to some of SEECO's properties to see first-hand what the well sites looked like. In 2006, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) made several funding awards under a program called Low Impact Natural Gas and Oil (LINGO). One of the projects that received an award is 'Probabilistic Risk-Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems'. The University of Arkansas at Fayetteville has the lead on the project, and Argonne National Laboratory is a partner. The goal of the project is to develop a Web-based decision support tool that will be used by mid- and small-sized oil and gas companies as well as environmental regulators and other stakeholders to proactively minimize adverse ecosystem impacts associated with the recovery of gas reserves in sensitive areas. The project focuses on a large new natural gas field called the Fayetteville Shale. Part of the project involves learning how the natural gas operators do business in the area and the technologies they employ. The field trip on August 9 provided an opportunity to do that.
Date: September 30, 2007
Creator: Veil, J. A. & Division, Environmental Science
Partner: UNT Libraries Government Documents Department

Laboratory measurements on core-scale sediment/hydrate samples topredice reservoir behavior

Description: Measurements on hydrate-bearing laboratory and field samplesare necessary in order to provide realistic bounds on parameters used innumerically modeling the production of natural gas from hydrate-bearingreservoirs. The needed parameters include thermal conductivity,permeability, relative permeability-saturation(s) relationships, andcapillary pressure-saturation(s) relationships. We have developed atechnique to make hydrate-bearing samples ranging in scale from coreplug-size to core-size in the laboratory to facilitate making thesemeasurements. In addition to pressure and temperature measurements, weuse x-ray computed tomography scanning to provide high-resolution dataproviding insights on processes occurring in our samples. Several methodsare available to make gas hydrates in the laboratory, and we expect thatthe method used to make the hydrate will impact the behavior of thehydrate sample, and the parameters measured.
Date: November 2, 2005
Creator: Kneafsey, Timothy J.; Seol, Yongkoo; Moridis, George J.; Tomutsa,Liviu & Freifeld, Barry M.
Partner: UNT Libraries Government Documents Department

Joule-Thomson Cooling Due to CO2 Injection into Natural GasReservoirs

Description: Depleted natural gas reservoirs are a promising target for Carbon Sequestration with Enhanced Gas Recovery (CSEGR). The focus of this study is on evaluating the importance of Joule-Thomson cooling during CO2 injection into depleted natural gas reservoirs. Joule-Thomson cooling is the adiabatic cooling that accompanies the expansion of a real gas. If Joule-Thomson cooling were extreme, injectivity and formation permeability could be altered by the freezing of residual water,formation of hydrates, and fracturing due to thermal stresses. The TOUGH2/EOS7C module for CO2-CH4-H2O mixtures is used as the simulation analysis tool. For verification of EOS7C, the classic Joule-Thomson expansion experiment is modeled for pure CO2 resulting in Joule-Thomson coefficients in agreement with standard references to within 5-7 percent. For demonstration purposes, CO2 injection at constant pressure and with a large pressure drop ({approx}50 bars) is presented in order to show that cooling by more than 20 C can occur by this effect. Two more-realistic constant-rate injection cases show that for typical systems in the Sacramento Valley, California, the Joule-Thomson cooling effect is minimal. This simulation study shows that for constant-rate injections into high-permeability reservoirs, the Joule-Thomson cooling effect is not expected to create significant problems for CSEGR.
Date: April 21, 2006
Creator: Oldenburg, Curtis M.
Partner: UNT Libraries Government Documents Department

Scenarios for Benefits Analysis of Energy Research, Development,Demonstration and Deployment

Description: For at least the last decade, evaluation of the benefits of research, development, demonstration, and deployment (RD3) by the U.S. Department of Energy has been conducted using deterministic forecasts that unrealistically presume we can precisely foresee our future 10, 25,or even 50 years hence. This effort tries, in a modest way, to begin a process of recognition that the reality of our energy future is rather one rife with uncertainty. The National Energy Modeling System (NEMS) is used by the Department of Energy's Office of Energy Efficiency and Renewable Energy (EE) and Fossil Energy (FE) for their RD3 benefits evaluation. In order to begin scoping out the uncertainty in these deterministic forecasts, EE and FE designed two futures that differ significantly from the basic NEMS forecast. A High Fuel Price Scenario and a Carbon Cap Scenario were envisioned to forecast alternative futures and the associated benefits. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) implemented these scenarios into its version of NEMS,NEMS-LBNL, in late 2004, and the Energy Information Agency created six scenarios for FE in early 2005. The creation and implementation of the EE-FE scenarios are explained in this report. Both a Carbon Cap Scenario and a High Fuel Price Scenarios were implemented into the NEMS-LBNL. EIA subsequently modeled similar scenarios using NEMS. While the EIA and LBNL implementations were in some ways rather different, their forecasts do not significantly diverge. Compared to the Reference Scenario, the High Fuel Price Scenario reduces energy consumption by 4 percent in 2025, while in the EIA fuel price scenario (known as Scenario 4) reduction from its corresponding reference scenario (known as Scenario 0) in 2025 is marginal. Nonetheless, the 4 percent demand reduction does not lead to other cascading effects that would significantly differentiate the two scenarios. The LBNL and EIA carbon scenarios ...
Date: September 7, 2005
Creator: Gumerman, Etan & Marnay, Chris
Partner: UNT Libraries Government Documents Department

The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

Description: WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.
Date: January 30, 2006
Creator: Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric et al.
Partner: UNT Libraries Government Documents Department

Active Control for Statistically Stationary Turbulent PremixedFlame Simulations

Description: The speed of propagation of a premixed turbulent flame correlates with the intensity of the turbulence encountered by the flame. One consequence of this property is that premixed flames in both laboratory experiments and practical combustors require some type of stabilization mechanism to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. Furthermore, the stabilization introduces additional fluid mechanical complexity into the overall combustion process that can complicate the analysis of fundamental flame properties. To circumvent these difficulties we introduce a feedback control algorithm that allows us to computationally stabilize a turbulent premixed flame in a simple geometric configuration. For the simulations, we specify turbulent inflow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm on methane flames at various equivalence ratios in two dimensions. The simulation data are used to study the local variation in the speed of propagation due to flame surface curvature.
Date: August 30, 2005
Creator: Bell, J.B.; Day, M.S.; Grcar, J.F. & Lijewski, M.J.
Partner: UNT Libraries Government Documents Department