5 Matching Results

Search Results

Advanced search parameters have been applied.

Tests of Commercial Densimeters for LNG Service

Description: Abstract: Densimeters for liquefied natural gas (LNG) from four manufacturers were tested in liquid methane and an LNG-like mixture of methane, propane, and nitrogen in the density reference system (DRS). The calibration and performance of one type tested for the first time are reported. The stability of the calibrations and performances of three densimeters of a type previously tested have been examined and are also reported here.
Date: June 1982
Creator: Siegwarth, J. D. & LaBrecque, J. F.
Partner: UNT Libraries Government Documents Department

Oil and Gas Supply Modeling

Description: Abstract: The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium.
Date: May 1982
Creator: Gass, Saul I.
Partner: UNT Libraries Government Documents Department

Direct use of Geothermal Energy at the San Bernardino Wastewater Treatment Plant

Description: This report provides a chronological and technical evaluation of the successful use of geothermal energy in San Bernardino, California to provide heating for wastewater treatment facilities. The annual cost savings for the currently tested system is more than $29,425 for the single anaerobic digester now being heated. Expansion of the wastewater facility, resulting in two additional digesters, could result in three geothermal heated digesters on line--a minimum of two. This expanded usage, together with expected natural gas price increases, should result in recovery of all investment costs in less than ten years.
Date: April 1, 1982
Partner: UNT Libraries Government Documents Department

A thermal resistance method for computing surface heat flow and subsurface temperatures with application to the Uinta Basin of northeastern Utah

Description: The thermal resistance method has been modified to test the utility of oil and gas well bottom-hole temperature data in determining heat flow and subsurface temperature patterns. Thermal resistance, defined as the quotient of a depth parameter '{Delta}{sub z}' and thermal conductivity 'k'', governs subsurface temperatures as follows: T{sub B} = T{sub 0} + q{sub 0} B {summation} z=0 ({Delta}z/k){sub i} where T{sub B} is the temperature at depth z = B, T{sub 0} is the surface temperature, q{sub 0} is surface heat flow and the thermal resistance ({Delta}z/k) is summed for all lithological units between the surface and depth B. In practice, bottom-hole temperatures are combined with a measured or estimated thermal conductivity profile to determine the surface heat flow q{sub 0}, which in turn is used for all consequent subsurface temperature computations. The method has been tested in the Tertiary Uinta Basin of northeastern Utah, a region of intermediate geologic complexity (structurally simple yet lithologically complex) where numerous oil and gas well data are available. Thermal conductivity values, determined for 852 samples from five representative wells varying in depth from 670 to 5180 meters, were used to assign average conductivities to geologic formations and to investigate the effect of facies changes on intra-formation conductivities. In situ conductivities were corrected for porosity and temperature effects. Formation thicknesses needed for the thermal resistance summation were obtained by utilizing approximately 2000 wells in the WEXPRO Petroleum Information file, the computations being expedited by describing all formation contacts as fourth order polynomial surfaces. Bottom-hole temperatures were used from 97 selected wells where multiple well logs permitted correcting temperatures for drilling effects.
Date: September 1, 1982
Creator: Chapman, David S. & Keho, Tim
Partner: UNT Libraries Government Documents Department