65 Matching Results

Search Results

Advanced search parameters have been applied.

2010 Wind Technologies Market Report

Description: The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.
Date: June 27, 2011
Creator: Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naïm; Hoen, Ben; Mills, Andrew et al.
Partner: UNT Libraries Government Documents Department

Exact solutions in a model of vertical gas migration

Description: This work is motivated by the growing interest in injectingcarbon dioxide into deep geological formations as a means of avoidingatmospheric emissions of carbon dioxide and consequent global warming.One of the key questions regarding the feasibility of this technology isthe potential rate of leakage out of the primary storage formation. Weseek exact solutions in a model of gas flow driven by a combination ofbuoyancy, viscous and capillary forces. Different combinations of theseforces and characteristic length scales of the processes lead todifferent time scaling and different types of solutions. In the case of athin, tight seal, where the impact of gravity is negligible relative tocapillary and viscous forces, a Ryzhik-type solution implies square-rootof time scaling of plume propagation velocity. In the general case, a gasplume has two stable zones, which can be described by travelling-wavesolutions. The theoretical maximum of the velocity of plume migrationprovides a conservative estimate for the time of vertical migration.Although the top of the plume has low gas saturation, it propagates witha velocity close to the theoretical maximum. The bottom of the plumeflows significantly more slowly at a higher gas saturation. Due to localheterogeneities, the plume can break into parts. Individual plumes alsocan coalesce and from larger plumes. The analytical results are appliedto studying carbon dioxide flow caused by leaks from deep geologicalformations used for CO2 storage. The results are also applicable formodeling flow of natural gas leaking from seasonal gas storage, or formodeling of secondary hydrocarbon migration.
Date: June 27, 2006
Creator: Silin, Dmitriy B.; Patzek, Tad W. & Benson, Sally M.
Partner: UNT Libraries Government Documents Department

IPNS progress report 2001-2006.

Description: In August 1981, the proton beam from the rapid cycling synchrotron (RCS) was first delivered to the Intense Pulsed Neutron Source (IPNS) neutron scattering target and now, in June 2006, it is with great joy that we celebrate the impending 25th anniversary of this event. This edition of the IPNS Progress Report will focus on the development and scientific accomplishments of the past 5 years, since our last Progress Report, but with some mention of the 25 years of IPNS experience. It is appropriate at this anniversary date to recall some of the more significant historic events that have led to the present IPNS and discuss some of the plans that will lead to even more successes. Below is a brief chronology that captures some of the developments of IPNS: 8/4/81 - First beam delivered to the neutron scattering target; 6/10/84 - IPNS produced its one billionth neutron pulse; 1/10/85 - Installed world's first solid methane moderator; 6/30/87 - 1000th experiment performed at IPNS; 9/19/87 - IPNS produced its two billionth neutron pulse; 11/20/91 - 2000th experiment performed at IPNS; 4/17/04 - IPNS produced its eight billionth neutron pulse; and 8/19/05 - 7000th experiment performed at IPNS. During the past 5 years, several significant source and instrument developments have taken place. Most of these are discussed in more detail elsewhere in the report, but three of the ones most visible to users are mentioned here.
Date: November 27, 2006
Creator: Marzec, B.
Partner: UNT Libraries Government Documents Department


Description: This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material ...
Date: September 27, 2004
Creator: Shanks, B.H.; Wheelock, T.D.; Satrio, Justinus A.; Diehl, Timothy & Vollmer, Brigitte
Partner: UNT Libraries Government Documents Department

Technical Progress Report for the Gas Storage Technology Consortium

Description: Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of October 1, 2005 through December 31, 2005. Activities during this time period were: (1) Nomination and election of Executive Council members for 2006-07 term, (2) Release the 2006 GSTC request-for-proposals (RFP), (3) Recruit and invoice membership for FY2006, (4) Improve communication efforts, and (5) Continue planning the GSTC spring meeting in San Diego, CA on February 21-22, 2006.
Date: February 27, 2006
Creator: Morrison, Joel L. & Elder, Sharon L.
Partner: UNT Libraries Government Documents Department

Cooperative Research in C1 Chemistry

Description: C1 chemistry refers to the conversion of simple carbon-containing materials that contain one carbon atom per molecule into valuable products. The feedstocks for C1 chemistry include natural gas, carbon dioxide, carbon monoxide, methanol and synthesis gas (a mixture of carbon monoxide and hydrogen). Synthesis gas, or syngas, is produced primarily by the reaction of natural gas, which is principally methane, with steam. It can also be produced by gasification of coal, petroleum coke, or biomass. The availability of syngas from coal gasification is expected to increase significantly in the future because of increasing development of integrated gasification combined cycle (IGCC) power generation. Because of the abundance of remote natural gas, the advent of IGCC, and environmental advantages, C1 chemistry is expected to become a major area of interest for the transportation fuel and chemical industries in the relatively near future. The CFFLS will therefore perform a valuable national service by providing science and engineering graduates that are trained in this important area. Syngas is the source of most hydrogen. Approximately 10 trillion standard cubic feet (SCF) of hydrogen are manufactured annually in the world. Most of this hydrogen is currently used for the production of ammonia and in a variety of refining and chemical operations. However, utilization of hydrogen in fuel cells is expected to grow significantly in the next century. Syngas is also the feedstock for all methanol and Fischer-Tropsch plants. Currently, world consumption of methanol is over 25 million tons per year. There are many methanol plants in the U.S. and throughout the world. Methanol and oxygenated transportation fuel products play a significant role in the CFFLS C1 program. Currently, the only commercial Fischer-Tropsch plants are overseas, principally in South Africa (SASOL). However, new plants are being built or planned for a number of locations. One possible location ...
Date: October 27, 2000
Creator: Huffman, Gerald P.
Partner: UNT Libraries Government Documents Department


Description: The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the ...
Date: June 27, 2008
Creator: Looney, B; M. Hope Lee, M & S. K. Hampson, S
Partner: UNT Libraries Government Documents Department

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

Description: This report describes work performed during the initial period of the project “Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.” The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.
Date: October 27, 2009
Creator: Thoma, Greg; Veil, John; Limp, Fred; Cothren, Jackson; Gorham, Bruce; Williamson, Malcolm et al.
Partner: UNT Libraries Government Documents Department

Dampers for Natural Draft Heaters: Technical Report

Description: Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline water heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.
Date: October 27, 2008
Creator: Lutz, James D.; Biermayer, Peter & King, Derek
Partner: UNT Libraries Government Documents Department

Theoretical Chemical Dynamics Studies of Elementary Combustion Reactions

Description: The purpose of this research was the development and application of theoretical/computational methods for accurate predictions of the rates of reactions in many-atom systems. The specific aim was to improve computational methods for studying the chemical dynamics of large, complex systems and to obtain a better understanding of the chemical reactions involving large polyatomic molecules and radicals. The focus was on the development an automatic potential energy surface generation algorithm that takes advantage of high-performance computing environments; e.g., software for rate calculations that direct quantum chemistry codes to produce ab initio predictions of reaction rates and related dynamics quantities. Specifically, we developed interpolative moving least-squares (IMLS) methods for accurately fitting ab initio energies to provide global PESs and for use in direct dynamics simulations.
Date: April 27, 2006
Creator: Thompson, Donald L.
Partner: UNT Libraries Government Documents Department

Science and Technology Gaps in Underground Coal Gasification

Description: Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need ...
Date: June 27, 2006
Creator: Upadhye, R; Burton, E & Friedmann, J
Partner: UNT Libraries Government Documents Department

Review of State Oil and Natural Gas Environmental Regulations

Description: The State Review Process is a multi-stakeholder process administered by the State Review of Oil and Natural Gas Environmental Regulations (STRONGER), Inc. and is a continuation of work initiated by the Interstate Oil and Gas Compact Commission (IOGCC) in 1989. The goal of the process is to assist oil and gas producing states in identifying innovative regulatory approaches to reducing environmental and administrative problems associated with the management of oil and gas exploration and production (E&P) industry wastes and to comprehensively assess and improve implementation and enforcement of state regulatory programs. The process consists of initial reviews of states E&P waste management regulatory programs by multi-stakeholder review teams and follow-up reviews to assess states responses to the initial review teams recommendations. Participation of citizens groups and environmental organizations in the state review process is encouraged and environmental training seminars are provided to citizens groups and others who are concerned about E&P waste management practices and interested in participating in state reviews. To date, 20 state programs have been reviewed and nine of these states have had follow-up reviews. The state review process has resulted in significant improvement to states E&P waste management regulatory programs and increased benefits to human health and the environment.
Date: September 27, 2005
Creator: Souders, Steve
Partner: UNT Libraries Government Documents Department

JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

Description: The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from ...
Date: March 27, 2009
Creator: Swanson, Michael; Sondreal, Everett; Laudal, Daniel; Hajicek, Douglas; Henderson, Ann & Pavlish, Brandon
Partner: UNT Libraries Government Documents Department

Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

Description: The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical oxidants ...
Date: February 27, 2012
Creator: Arnold, Frances H.
Partner: UNT Libraries Government Documents Department

Methane and Other Air Pollution Issues in Natural Gas Systems

Description: This report discusses the natural gas supply chain that contributes to air pollution in several ways, including (1) the leaking, venting, and combustion of natural gas in the course of production operations; and (2) the combustion of other fossil fuel resources or other emissions during associated operations.
Date: July 27, 2017
Creator: Lattanzio, Richard K.
Partner: UNT Libraries Government Documents Department

Research and Development of an Integral Separator for a Centrifugal Gas Processing Facility

Date: February 27, 2007
Creator: Hays, Lance
Partner: UNT Libraries Government Documents Department

Life-cycle analysis of shale gas and natural gas.

Description: The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.
Date: January 27, 2012
Creator: Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems) & EVS), (
Partner: UNT Libraries Government Documents Department

Hydrogen Commercialization: Transportation Fuel for the 21st Century

Description: Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.
Date: May 27, 2008
Creator: Toro, Apolonio Del
Partner: UNT Libraries Government Documents Department

Methane and Other Air Pollution Issues in Natural Gas Systems

Description: This report provides information on the natural gas industry and the types and sources of air pollutants in the sector. It examines the role of the federal government in regulating these emissions, including the provisions in the Clean Air Act and other statutes, and EPA's and other agencies' regulatory activities. It concludes with a brief discussion of a number of issues under debate, including: defining the roles of industry and local, state, and federal governments; establishing comprehensive emissions data; determining the proper control of pollutants and sources; understanding the human health and environmental impacts of emissions; and estimating the costs of pollution abatement.
Date: July 27, 2017
Creator: Lattanzio, Richard K.
Partner: UNT Libraries Government Documents Department